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Introduction: 

We know from before ( http://www.facsystems.com/Slip.pdf ) the best curve for Kp with no 

friction on the wall is a passive line proved by variations. Shields and Tolunay (1973)[2] did a 

modified Terzaghi (1943)[20] analysis for passive pressure in granular material on a wall with 

positive friction. In their solution they used the method of slices and assumed the shear between 

slices to be zero on each slice except for the first slice next to the wall. The slip surface they used 

is a logarithmic spiral and their results were close to experimental findings. Basudhar and 

Madhav (1980)[1] repeated the analysis and included cohesion and pore pressure. In their 

analysis they did not use the same initial angle αw at the wall between the logarithmic spiral and 

the horizontal; they obtained αw from minimizations of Kp. It will be shown the Kp can be obtain 

with the exact slip surface from variation methods and the initial angle αw at the wall between 

the new slip surface and the horizontal cannot be obtained from minimizations.  Angle αw from 

Shields and Tolunay (1973)[2] is correct in Zone II in Fig. 1. The proposed αw at the wall is used 

from modifications of Shields and Tolunay in Zone I in Fig. 1 and matching experiment. So 
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Where, φ is the internal friction angle of the soil and δ is the positive wall friction with the soil. 
Eq. 2 was modified from Eq. 1 to match Terzaghi (1943)[20] bearing capacity assumption (see 

Fig. 1 Zone I).  (This choice was chosen out respect for Terzaghi; in reality Shields and Tolunay 

angle is ok the way it is and it may not make much difference with the adjustment). The 

proposed slip surface is obtained by implementing Shields and Tolunay (1973)[2] assumption 

that the friction is dissipated all in the first slice using the method of slices. The resulting solution 

will be shown to be an absolute lower bound to Kp, lower than experimental findings indicating 

the wall friction dissipates to more then one slice at the wall. However, if someone would like to 

research the friction dissipating in more than one slice, our derived slip surface still must be used 

in the zone with no friction between slices (If needed preliminary equation has been prepared 

and can be provided upon request). Thus, the following derived slip surface is exact and 
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important. To mach experiments we select a specific geometry as an approximation and assume 

geometrical harmony.  

 

Analysis: 

We seek to find a slip surface by variation with the angle αw at the wall prescribed. Following 

Terzaghi (1943)[20] we break the slip surface to three zones see Fig. 1. Zone III has a line for the 

curve with   α0 = π/4 - φ/2 as is expected from the variation analysis 

 ( http://www.facsystems.com/Slip.pdf ). Zone I & II the wedge forces can be expressed as: 

 

∫∫ ±= dWdE )tan( φψ  ……………………………………………………………………… (3) 

 

Where the total wedge weight of each slice in Zone I or II = ∫dW and the total passive force from 

each slice Zone I or II = ∫dE. (ψ ± φ) is the direction of the resultant force on the bottom of the 

wedge. 

 

If we minimize the total passive force ∫dE with Eq. 3 as a condition, where (ψ ± φ) is assumed 

constant and at the actual value of the effective Kp. So the direction of the resultant at the bottom 

of the total wedge is constant and is independent from the slip surface variation. This condition 

comes intuitively. So, we will obtain a slip surface that can have a prescribed αw.Thus, from   

( http://www.facsystems.com/Slip.pdf ) we have: 
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Fig. 1 Slip Surface Zones 

 

 

 

Therefore Euler’s equation [6] applies where 
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which can be written as       ℜ− ′
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and λ0 is Lagrange multiplier. 

 

Where ℜ does not involve x explicitly, and h0 is a constant. 

Substituting in Eq. 7 yields 
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Or: 
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If h0 = 0 , λ0 = 0 then when solving for y’ in Eq. 9, we have the classic passive line with αw = π/4 
- φ/2 and Kp = tan2(π/4 + φ/2). Thus, the line slip surface becomes a special condition of Eq. 9. 

 

Substitute ydydxx ′==′ /1/ in Eq. 9 and solve for x’ yields:  
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Where, 
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Also in Zone I at  y =  ya  
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1
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Terzaghi (1943)[20] explains that zone is for the slip surface for bearing capacity for ideal soil 

smooth base.) .Eq. 10 can be written as: 
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Integrating Eq. 11 gives the slip surface for Zone II: 
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Integrating Eq. 12 gives the slip surface for Zone I: 
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Now setting up the total passive force ∫dE for αw ≥ 0 or Zone II + Zone III we have, 
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Substituting Eq. 11 in Eq. 15 and integrating yields, 
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Let n = yb / y   and  m = y0 / yb  and substitute in Eq. 16 and find K’p yields, 
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A relation between n and m can be found from Eq. 1 and Eq. 11 we have: 
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Kp from Shields and Tolunay (1973)[2] can be found as 
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If minimizing Eq. 19 with respect to n or m the result is K’p = tan
2
 (π/4 + φ/2) and the slip 

surface becomes a line. Which is not physically acceptable and thus the result cannot be obtained 

from minimizations. 

 

To match experiment and assuming geometrical harmony, a good approximation can be 
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Thus using Eq. 17, Eq. 18 and Eq, 20, Kp can be found from Eq. 19 (see kp2.xls for results) 

 

 

Now setting up the total passive force ∫dE for αw < 0 or Zone I + Zone II + Zone III we have, 
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Where, φ is replaced by -φ in Zone I, α is negative and y’ is positive and tanα = -y’. Substituting 
m = 0.7 and n = 1 in Eq. 17 yields the Zone II and Zone III integrations in Eq. 21, and Eq. 21 

becomes 
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Substituting Eq. 12 in Eq. 22 and integrating yields, 
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Let  l = ya / yb  and n = yb / y  and substitute in Eq. 23 and find K”p yields, 
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A relation between n and l can be found from Eq. 2 and Eq. 12 we have: 
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Kp from Shields and Tolunay (1973)[2] can be found as 
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To match experiment and assuming geometrical harmony, a good approximation can be 
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Thus using Eq. 24, Eq. 25 and Eq, 27, Kp can be found from Eq. 26 (see kp2.xls for results) 

 

 

 

Conclusion: 
The exact slip surface for the method of slices with no friction between the slices is derived from 

the method of variation. The condition chosen with the variation method requires the resultant 

force of the wedge of Zone I and Zone II remain in the same direction, which is considered 

effective for the direction chosen is of the actual resultant of the actual Kp. Because this slip 

surface gives an absolute minimum and a lower bound, it underestimates Kp for smaller φ when 

compared with experiment. This is an indication that the friction on the wall for smaller φ 
dissipate in more than the first slice at the wall. We have selected the boundary condition to 

match experiment, since no minimization is possible and only geometric relations and harmony 

are considered. The proposed solution is a lower bound and can be used to obtain a Kp with an 

effective φ. 
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