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Introduction:

We know from before ( http://www.facsystems.com/Slip.pdf’) the best curve for Kp with no
friction on the wall is a passive line proved by variations. Shields and Tolunay (1973)[2] did a
modified Terzaghi (1943)[20] analysis for passive pressure in granular material on a wall with
positive friction. In their solution they used the method of slices and assumed the shear between
slices to be zero on each slice except for the first slice next to the wall. The slip surface they used
is a logarithmic spiral and their results were close to experimental findings. Basudhar and
Madhav (1980)[1] repeated the analysis and included cohesion and pore pressure. In their
analysis they did not use the same initial angle ¢, at the wall between the logarithmic spiral and

the horizontal; they obtained ¢, from minimizations of Kp. It will be shown the Kp can be obtain
with the exact slip surface from variation methods and the initial angle «,, at the wall between
the new slip surface and the horizontal cannot be obtained from minimizations. Angle ¢,, from

Shields and Tolunay (1973)[2] is correct in Zone II in Fig. 1. The proposed ¢, at the wall is used
from modifications of Shields and Tolunay in Zone I in Fig. 1 and matching experiment. So
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Where, ¢ is the internal friction angle of the soil and 9 is the positive wall friction with the soil.
Eq. 2 was modified from Eq. 1 to match Terzaghi (1943)[20] bearing capacity assumption (see
Fig. 1 Zone I). (This choice was chosen out respect for Terzaghi; in reality Shields and Tolunay
angle is ok the way it is and it may not make much difference with the adjustment). The
proposed slip surface is obtained by implementing Shields and Tolunay (1973)[2] assumption
that the friction is dissipated all in the first slice using the method of slices. The resulting solution
will be shown to be an absolute lower bound to Kp, lower than experimental findings indicating
the wall friction dissipates to more then one slice at the wall. However, if someone would like to
research the friction dissipating in more than one slice, our derived slip surface still must be used
in the zone with no friction between slices (If needed preliminary equation has been prepared
and can be provided upon request). Thus, the following derived slip surface is exact and
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important. To mach experiments we select a specific geometry as an approximation and assume
geometrical harmony.

Analysis:

We seek to find a slip surface by variation with the angle ¢, at the wall prescribed. Following
Terzaghi (1943)[20] we break the slip surface to three zones see Fig. 1. Zone III has a line for the
curve with ay=m/4 - ¢/2 as is expected from the variation analysis

( http://www.facsystems.com/Slip.pdf’). Zone I & II the wedge forces can be expressed as:
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Where the total wedge weight of each slice in Zone I or Il = [dW¥ and the total passive force from
each slice Zone I or Il = [dE. (¢ + &) is the direction of the resultant force on the bottom of the
wedge.

If we minimize the total passive force [dE with Eq. 3 as a condition, where ( + &) is assumed
constant and at the actual value of the effective Kp. So the direction of the resultant at the bottom
of the total wedge is constant and is independent from the slip surface variation. This condition
comes intuitively. So, we will obtain a slip surface that can have a prescribed ¢,,.Thus, from

( http://www.facsystems.com/Slip.pdf ) we have:
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Fig. 1 Slip Surface Zones

Therefore Euler’s equation [6] applies where
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and 4y is Lagrange multiplier.
Where R does not involve x explicitly, and 4 is a constant.
Substituting in Eq. 7 yields
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If hp =0, Ao = 0 then when solving for y’in Eq. 9, we have the classic passive line with &, = 7/4
- #2 and Kp = tan’(z/4 + #/2). Thus, the line slip surface becomes a special condition of Eq. 9.

Substitute x' = dx/dy =1/ y"in Eq. 9 and solve for x yields:
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Alsoin Zone I at y = y, x'=—tan ¢{1 -
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} to mach the line of Zone IV (not shown , where

Terzaghi (1943)[20] explains that zone is for the slip surface for bearing capacity for ideal soil
smooth base.) .Eq. 10 can be written as:
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Integrating Eq. 11 gives the slip surface for Zone II:
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Integrating Eq. 12 gives the slip surface for Zone I:
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Now setting up the total passive force [dE for «,, > 0 or Zone II + Zone III we have,
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Substituting Eq. 11 in Eq. 15 and integrating yields,
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Letn=y,/y and m=yy/y, and substitute in Eq. 16 and find K’p yields,
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A relation between n and m can be found from Eq. 1 and Eq. 11 we have:
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Kp from Shields and Tolunay (1973)[2] can be found as
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If minimizing Eq. 19 with respect to 7 or m the result is K p = tan” (7/4 + #/2) and the slip
surface becomes a line. Which is not physically acceptable and thus the result cannot be obtained
from minimizations.

To match experiment and assuming geometrical harmony, a good approximation can be

Thus using Eq. 17, Eq. 18 and Eq, 20, Kp can be found from Eq. 19 (see kp2.xls for results)

Now setting up the total passive force [dE for &z, <0 or Zone 1 + Zone II + Zone III we have,
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Where, ¢ is replaced by -¢ in Zone 1, « is negative and y’ is positive and tana = -y . Substituting
m=0.7and n=1 in Eq. 17 yields the Zone II and Zone III integrations in Eq. 21, and Eq. 21
becomes
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Substituting Eq. 12 in Eq. 22 and integrating yields,
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Let /=y,/y, and n =1y, /y and substitute in Eq. 23 and find K”p yields,

E" )
K"p= » :n{lJrsm ¢+2.5119tan¢} (1+sm ¢J

0.5p° cos’ ¢ cos’ ¢

+2n2(tan¢} 4l -2+2nl-3n V

cos ¢ dn I =1F (24)
S——
SNI-1I?
A relation between # and / can be found from Eq. 2 and Eq. 12 we have:
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Kp from Shields and Tolunay (1973)[2] can be found as
Kp = R D (26)
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To match experiment and assuming geometrical harmony, a good approximation can be
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Thus using Eq. 24, Eq. 25 and Eq, 27, Kp can be found from Eq. 26 (see kp2.xls for results)

Conclusion:

The exact slip surface for the method of slices with no friction between the slices is derived from
the method of variation. The condition chosen with the variation method requires the resultant
force of the wedge of Zone I and Zone Il remain in the same direction, which is considered
effective for the direction chosen is of the actual resultant of the actual Kp. Because this slip
surface gives an absolute minimum and a lower bound, it underestimates Kp for smaller ¢p when
compared with experiment. This is an indication that the friction on the wall for smaller ¢
dissipate in more than the first slice at the wall. We have selected the boundary condition to
match experiment, since no minimization is possible and only geometric relations and harmony
are considered. The proposed solution is a lower bound and can be used to obtain a Kp with an
effective ¢.
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