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Abstract:

In this synopsis, the Variational method is used to determine the slope stability slip surface based
on the ordinary method of slices without pore pressure and not circular for the time being. It is
shown that using the ordinary method of slices gives approximately the same shape slip surface
for the moment's equation, so ignoring that the method was derived for circles is adequate. The
result shows that the embankment's geometry and topography affect the slip surface's shape.

Introduction:

The principle of slope stability has been developed over the past seventy years and provides a set
of soil mechanics principles from which to approach practical problems. Although the mechanics
of slope failure in heap leaching may be difficult to predict, the principles used in a standard of
practice examination are relatively straightforward. The proposed method of variation analysis is
a far better prediction and is a refined method than current methods; the slip surface is prescribed
and not guest at. This approach relieves the mathematical uncertainty of what the slip surface is,
provided the soil parameters are close to reality. It gave us a better prediction than a circle or log
spiral.

An analysis of slope stability begins with the hypothesis that a slope's stability results from
downward or motivating forces (i.e., gravitational) and resisting (or upward) forces. These forces
act in equal and opposite directions, as seen in practice. The resisting forces must be greater than
the motivating forces for a slope to be stable. The relative stability of a slope (or how stable it is
at any given time) is typically conveyed by geotechnical engineers through a Factor of Safety F
defined as follows:

R

The equation states that the factor of safety is the ratio between the forces/moments resisting (R)
movements and the forces/moments motivating (M) movements. When the safety factor equals
1.0, a slope has just reached failure conditions. If the safety factor falls below 1.0, failure or has
already occurred is imminent. Factors of safety in the range of 1.3 to 1.5 are considered
reasonably safe in many design scenarios. However, the actual factor of safety used in the design
is influenced by the risk involved and the certainty with which other variables are known.

Analysis 1:

! Structural, Electrical and Foundation Engineer, FAC Systems Inc. 6738 19" Ave. NW, Seattle, WA 98117



Minimizing the safety factor for the ordinary method of slices would give a closer slip surface
for a true slip surface. Once the slip surface is prescribed, a comprehensive framework for limit
equilibrium methods of slices developed, for example, by Fredlund et al. (1981), would give a
more realistic safety factor. The Fredlund methodology can analyze both circular and non-
circular slip surfaces. Because pore pressure can change the slip surface, it will not be considered
for the demonstration. So, the forgoing analysis is for one condition, which will be checked for a
unique situation with ¢ is zero or for a cohesion material. Still, the slip surface derived by
Chouery in determining the maximum soil pressure for a smooth wall, currently being published,
should be considered since the Cullman method is always considered. In this case, the slip
surface by Chouery assumes a smooth wall, which is appropriate for slope stability of the
embankment where there is no friction at the outer surface. Also, the safety factor of the forces
and the moments must be considered separately; both have to be minimized, and the least one
must be considered.

a) Force Analysis
The ordinary method of slices gives the first safety factor of the forces as follows:

o cjds+7/tan¢_[ycosadx _ j]ﬂ(x,y,j;)dx _ jFl
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Where y = —-tana

Now the solution must satisfy the following:

Min([ F,)

= WIFZ) ............................................................................ )
Rewrite Eq. 2 as
FMax(J‘Fz)—Min(J‘Fl)zo ............................................................ 3)
Since [F) is a positive number, then Eq. 3 can be written as
FMax( j F,)+ Max(~ j F) =0 e, (4)
Or
Max(Fsz—jFl)zo ..................................................................... (5)

If F is picked, Eq 5 can be satisfied using the Variational method. The constant coefficients of
the nonlinear differential equation will satisfy Eq. 5. Now, pick a lower number for F than before



and solve Eq. 5 again and continue until Eq. 5 cannot be satisfied anymore. The solution is found
for minimum F in Eq. 2. This situation is similar to minimizing Eq. 2 using a Lagrange
multiplier, so seeking to minimize |F; with the condition [F is a constant or vice versa. Thus,
the extremum that gives the slip surface is

Max(szmjﬂ) ............................................................................ (6)

Where 4 is the Lagrange multiplier, thus if 1 = 0, it is Max([F2); if A = - oo then it is Min(JF;), and
A 1s not necessarily 1/F, A balance the maximization.

b) Moment Analysis

See Fig 1 for a stationary slip surface a-b. For a moment at point A, where A is to be determined,
the equation for the safety factor is:

b
Fig 1 — Slice i taking moments at A
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Where 71 and r; are the resultant radial distances, with many respect r1; = r2;. Thus

Min(r [ F)  Min(r)x Min([ F,)
- Max(rszz) - Max(rz)xMax(j F,)

m

Min(JF) is two parts the Jds and [ycosa dx. The minimum |ds is a line for minimum cohesion;
thus, it forces the slip surface to be less concave upward, and r is reduced to a minimum, [ycosa
dx is minimum when W; (or y) is reduced, giving a; to increase and cosa; is to be decreased thus
again r1 is reduced to a minimum since the shape is less concave upward. Thus Min(JF;) gives r1
at a minimum anyway.

Max([F?) is the maximum when Jysina dx increase or W; (or y) increase decreases a;. Thus, 72 is
increased for some constant o; because the slip surface becomes more concave upward. If we
kept W; (or y) constant and moved a; up or down by a small increment, then 7»; increases for
some slices and decreases for others, and 7> remains relatively the same. Thus, the bulk of the
maximization of 7, is increasing W; and not increasing sina;. Also, if we increase concavity after
Max([F?) is reached, [ysina dx will decrease, and r» will increase but remain relatively the same,
and the product 7[F> may decrease since [F> decrease. Thus Max(JF>) gives r2 at the
approximately maximum anyway. In reality, Eq. 9 will provide a different slip surface than Eq.
2. However, from the Ordinary Method of Slices (Fellenius, 1927) and Bishop's Modified
Method (Bishop, 1955)

- Only for circular slip surfaces.

- Satisfies moment equilibrium.

- Satisfies vertical force equilibrium.

- Does not satisfy horizontal force equilibrium.

It is expected the difference between F,, (Moment Analysis), and F' (Force Analysis) is
negligible.

This assumption of concavity upwardly is based on physics and experiments since if the slip
surface is concave downward for a given ¢ and o is not possible. Thus Eq. 9 becomes:

h xMin(.[Fl)
N 7, xMax(sz)

m

It reduces to maximizing Eq. 6. Thus, the slip surface for Eq. 2 and Eq. 10 has the same shape;
only the constant coefficients from solving the nonlinear differential equation of Eq. 6 are

different and make sense physically. Thus, the only slip surfaces to be investigated are from Eq.
6.

Eq. 6 can be written as



ybf_jv( *) dxw{j I+ dv+ ytan g yrj f(x) } ............................ (11)

Where f(x) is the function representing the topography, we apply the Euler equation.

OR_d|oR|_ ENECAT(C) . y+ f(x)
oy dx{ay} 0 and %= m +/{C«/1+y +7tan¢—m} ............. (12)

As before with Chouery's article, we start with a Fourier series representation of f{x) and convert
it to a Taylor series by inverting the matrix representation and solving Eq. 12 with a polynomial.

y= Z a,x" Where m gives a good approximation of the curve where the coefficient am+1

diminishes if substituting x by x/yo, where )y is the maximum height of the embankment.

We conclude that f{x) affects the slip surface, geometry, and topography, but we do not know
how much. Also, the slip surface is prescribed, not guessed at. Examples will follow.

Examples 1:

The solution for f{x) = 0 and ¢ = 0 will be sought. Note: the ordinary method of slices gives the
same answer as other methods. Fig 2 shows the embankment for 4 = 0.

Slip Surface
(0, yo)

Fig 2 Slip Surface for f{x) =0, p =0and A =0

From Eq. 12 yields,



Y g
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V1+ 32

If set A = 0, the solution yields:

Where £ is a constant of integrations. The factor of safety is:

_ 3.845¢
Mo

F and 2 =0.1733 yo, xo (aty = h)is xo = 0.866 yo, y e = —0.6716 or 33.885°

Where the vertical portion at 4 in Fig. 2 is taken as having a cohesion c. Note that a circle gives
3.83 instead of 3.845; thus, A # 0 will be calculated in the next examples. Also: note the slip
surface does not look like a circle or log spiral and is 90 degrees to the top surface. F,, exact is
not calculated in this exercise.

Example 2:

When considering 4 # 0 in example 1 and using the Euler equation of Eq. 12, it yields:
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Where in here A is a new constant. Eq. 16 yields:

.3 .5
e, (17)
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Working with a fourth-order Taylor polynomial approximation series, so let

i =a,+a, (:—n:] + &, (:—njz + &, (:—nja + a, (:—nr ......................................... (18)
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From Eq. 17, 20 and 22
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Thus, pick a1 and 4 given yo, find a» from Eq. 24, substitute in Eq. 25, find a3 and substitute in
Eq. 26 and find a4. Set y = 0 in Eq. 18, find the proper root x0, and minimize F in Eq. 1 using Eq.
18 and 19.



To compare with example 1, the solution for a fourth-degree polynomial for A =0 is:
yo =20

a1 =-0.85 (on bottom 40.36°) in example 1 it was -0.6716 (33.885°)

a> =-0.207

as=-7.728 x 1073

as=-3.469x 104

xo (at y =0) =0.949 yo in example 1 it was 0.866 y (at surface tana = 1.289 or 52.19°)

3.898¢
Mo

F=

So, the result shows the fourth-order polynomial approximation is 1.5% higher than example 1.
In order to be closer to F of example 1, more terms are needed in the Taylor series polynomial.
All numbers are close and not obtained from an algorithm, so there could be computation or
derivation errors. The effect of 4 has a solution as follows:
yo =20
=-19.55
a1 =-0.683 (on bottom 34.33°)
a>=-0.38
az =-0.027
as=-8.035x 10*
xo (at y =0) = 0.94 yo (at surface tana = 1.526 or 56.76° )

3.855¢
o

F =



Or F is lower for using 4 but not quite as example 1 because more terms are needed in the
polynomial.

Example 3:

We seek a different solution than Example 2. Thus, considering 4 # 0 in example 1 and using the
Euler equation of Eq. 12, it yields:

vy d y w’ b
——— | - + + A =0 (28)
) .2 2 .2
Y+ dx| J1+y 1+ %) NIEy
Where in here 4 is a new constant. Eq. 28 yields:
.2
o (29)

X =
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Working with a fourth-order Taylor polynomial approximation series, so let
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Yo Yo Yo
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g(¥/yo) can be expressed with a Taylor approximation as
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From Eq. 29, 32 and 34
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a, = ———

22

6a | 9% % —3x(1+ %%) + 3yX

_3:_'g (0): y - ( ‘2) - y

Yo [3yx—/1(1+x )]
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................................................................ 37)
120, 100 18y 43y 200y? % = 31+ ) + 3 31 — 3y — 24k
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or
a, :_Sig alz 2
4F (1+ad)
............................................................................ (38)

Thus pick a1 and 4 gave yo, find a2 from Eq. 36, find a3 in Eq. 37, and find a4in Eq. 38. Set x =0
in Eq. 31 and find the proper root y and make sure it is negative and minimize F in Eq. 1 using
Eq. 31.

cJ-OyO N1+ it dy

F T (39)
Yo
~7 L L dy

VI+x?

The effect of A has a solution as follows:
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yo =20

A=17.5

a1 =-0.35 (at surface tana = 2.857 or 70.71° this is closer to 90° similar to example 1)
a>»=-0.571

a3 =0.01

as=-4.535x 10"

av=-ar-ax-a3-a+=0912 @y =yoand x = 0 in Eq. 30, or xo =0.912 yo

(it was xo = 0.938 yo in example 2 by solving the fourth-order polynomial of Eq. 18 with x = xo
andy =0

)'c|y=y =a, +2a, +3a, +4a, = -1.464 or ao = 34.335° (at bottom oo = 34.33° in Example 2)
Fo 3.808¢
Wo

Thus, this polynomial approximation gave a factor for F of 3.808 less than a circle of an F' factor
of 3.83, and the Variational method works.

Note: A takes a positive value due to the following:

5Iysinadx=%v[ Y dxz%j X dyz—LJ. Yy dx

1+ x° 1+ x2 —A° 1+ 57

Conclusion:

Geometry affects the shape of the slip surface, but we do not know how much. Also, from the
example shown, one may conclude that maximizing Max(/F2), independent from ¢ and ¢, is all
that is needed and adds a safety factor. It is not correct; the example shows otherwise. Also,
generalization per one condition is not acceptable for one condition, and when including ¢, the
difference between a circle and a log spiral can be 13%. For example, the slip surface can be
circular on the bottom and linear at the top, so what is the correct slip surface? Thus, deriving the
correct slip surface is more desirable since the shape affects the safety factor. Note: finite
element relies on Poisson's Ratio, and the Modulus of Elasticity has not produced a significant
difference over the limit equilibrium method. The slip surface runs through the elements, is
poorly defined, and has no plasticity. The slip surface is somewhere in the elements depending
on the element's size. The finite element is still an approximation where Variational Method
represents the exact slip surface given the Taylor series higher terms diminish. There is expected
to be a difference with the Variational method and produce more reliable safety factors. If we say
the hill is safe, we had better make sure.
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Other issues: In many cases providing soil parameters is impossible to obtain. For example:
1- Embankments underwater in a deep ocean environment

2- Quik clay materials have no values.

3- A crater in a far-away planet or moon in our solar system.

4- Generally, boring logs are impossible to drill because of government or public restrictions.
5- No knowledge of soil below

This situation can be handled as in Example 1, ¢ has to be estimated because if ¢ and ¢ are zero,
it would be like water.

Photos showing slip surface from Soil Mechanics, SI Version book by T. William Lambe and
Robert V. Whitman, Massachusetts Institute of Technology, With the assistance of H. G. Poulos,
University of Sydney, John Wiley & Sons, Inc. SI Version Copyright © 1979, pp 164 and pp
190.

It is a slope stability failure curve or a stress failure curve. It looks like it is similar to my slope
stability curve. Per Colomb stress failure curve, it would be a line. Failure curves in the
following photos are misunderstood.

164 PART III DRY SOIL

Fig. 13.3 Double exposure showing movements of “soil”
surrounding model retaining wall.
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Fig. 1330 Failure of model of braced excavation. (z) Stable. (6) About to fuil. (c) Failing; note motions, (d) Afs
Tailure.

190
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