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Abstract: 
In this synopsis, the Variational method is used to determine the slope stability slip surface based 
on the ordinary method of slices without pore pressure and not circular for the time being. It is 
shown that using the ordinary method of slices gives approximately the same shape slip surface 
for the moment's equation, so ignoring that the method was derived for circles is adequate. The 
result shows that the embankment's geometry and topography affect the slip surface's shape. 
 
Introduction: 
The principle of slope stability has been developed over the past seventy years and provides a set 
of soil mechanics principles from which to approach practical problems. Although the mechanics 
of slope failure in heap leaching may be difficult to predict, the principles used in a standard of 
practice examination are relatively straightforward. The proposed method of variation analysis is 
a far better prediction and is a refined method than current methods; the slip surface is prescribed 
and not guest at. This approach relieves the mathematical uncertainty of what the slip surface is, 
provided the soil parameters are close to reality. It gave us a better prediction than a circle or log 
spiral. 
 
An analysis of slope stability begins with the hypothesis that a slope's stability results from 
downward or motivating forces (i.e., gravitational) and resisting (or upward) forces. These forces 
act in equal and opposite directions, as seen in practice. The resisting forces must be greater than 
the motivating forces for a slope to be stable. The relative stability of a slope (or how stable it is 
at any given time) is typically conveyed by geotechnical engineers through a Factor of Safety Fs 
defined as follows: 
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The equation states that the factor of safety is the ratio between the forces/moments resisting (R) 
movements and the forces/moments motivating (M) movements. When the safety factor equals 
1.0, a slope has just reached failure conditions. If the safety factor falls below 1.0, failure or has 
already occurred is imminent. Factors of safety in the range of 1.3 to 1.5 are considered 
reasonably safe in many design scenarios. However, the actual factor of safety used in the design 
is influenced by the risk involved and the certainty with which other variables are known.  
 
 
 
Analysis 1: 
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Minimizing the safety factor for the ordinary method of slices would give a closer slip surface 
for a true slip surface. Once the slip surface is prescribed, a comprehensive framework for limit 
equilibrium methods of slices developed, for example, by Fredlund et al. (1981), would give a 
more realistic safety factor. The Fredlund methodology can analyze both circular and non-
circular slip surfaces. Because pore pressure can change the slip surface, it will not be considered 
for the demonstration. So, the forgoing analysis is for one condition, which will be checked for a 
unique situation with φ is zero or for a cohesion material. Still, the slip surface derived by 
Chouery in determining the maximum soil pressure for a smooth wall, currently being published, 
should be considered since the Cullman method is always considered. In this case, the slip 
surface by Chouery assumes a smooth wall, which is appropriate for slope stability of the 
embankment where there is no friction at the outer surface. Also, the safety factor of the forces 
and the moments must be considered separately; both have to be minimized, and the least one 
must be considered. 
 
a) Force Analysis 
The ordinary method of slices gives the first safety factor of the forces as follows: 
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Where tany  
 
Now the solution must satisfy the following: 
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Rewrite Eq. 2 as 
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Since ∫F1 is a positive number, then Eq. 3 can be written as 
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Or 
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If F is picked, Eq 5 can be satisfied using the Variational method. The constant coefficients of 
the nonlinear differential equation will satisfy Eq. 5. Now, pick a lower number for F than before 
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and solve Eq. 5 again and continue until Eq. 5 cannot be satisfied anymore. The solution is found 
for minimum F in Eq. 2. This situation is similar to minimizing Eq. 2 using a Lagrange 
multiplier, so seeking to minimize ∫F1 with the condition ∫F2  is a constant or vice versa. Thus, 
the extremum that gives the slip surface is 
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Where λ is the Lagrange multiplier, thus if λ = 0, it is Max(∫F2); if λ = - ∞ then it is Min(∫F1), and 
λ is not necessarily 1/F, λ balance the maximization. 
 
b) Moment Analysis 
 
See Fig 1 for a stationary slip surface a-b. For a moment at point A, where A is to be determined, 
the equation for the safety factor is: 
 
 

 

 
Fig 1 – Slice i taking moments at A 
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Where r1 and r2 are the resultant radial distances, with many respect r1i ≈ r2i. Thus 
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Min(∫F1) is two parts the ∫ds and  ∫ycosα dx. The minimum  ∫ds is a line for minimum cohesion; 
thus, it forces the slip surface to be less concave upward, and r1 is reduced to a minimum,  ∫ycosα 
dx is minimum when Wi (or y) is reduced, giving αi to increase and cosαi is to be decreased thus 
again r1 is reduced to a minimum since the shape is less concave upward. Thus Min(∫F1) gives r1 
at a minimum anyway. 
 
Max(∫F2) is the maximum when  ∫ysinα dx  increase or Wi (or y) increase decreases αi. Thus, r2 is 
increased for some constant αi because the slip surface becomes more concave upward. If we 
kept Wi (or y) constant and moved αi up or down by a small increment, then r2i increases for 
some slices and decreases for others, and r2 remains relatively the same. Thus, the bulk of the 
maximization of r2 is increasing Wi and not increasing sinαi. Also, if we increase concavity after 
Max(∫F2)  is reached, ∫ysinα dx will decrease, and r2 will increase but remain relatively the same, 
and the product r2∫F2 may decrease since ∫F2 decrease. Thus Max(∫F2) gives r2 at the 
approximately maximum anyway. In reality, Eq. 9 will provide a different slip surface than Eq. 
2. However, from the Ordinary Method of Slices (Fellenius, 1927) and Bishop's Modified 
Method (Bishop, 1955)  
- Only for circular slip surfaces. 
- Satisfies moment equilibrium. 
- Satisfies vertical force equilibrium. 
- Does not satisfy horizontal force equilibrium. 
It is expected the difference between Fm (Moment Analysis), and F (Force Analysis) is 
negligible. 
 
This assumption of concavity upwardly is based on physics and experiments since if the slip 
surface is concave downward for a given c and φ is not possible. Thus Eq. 9 becomes: 
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It reduces to maximizing Eq. 6. Thus, the slip surface for Eq. 2 and Eq. 10 has the same shape; 
only the constant coefficients from solving the nonlinear differential equation of Eq. 6 are 
different and make sense physically. Thus, the only slip surfaces to be investigated are from Eq. 
6. 
 
Eq. 6 can be written as  
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Where f(x) is the function representing the topography, we apply the Euler equation. 
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As before with Chouery's article, we start with a Fourier series representation of f(x) and convert 
it to a Taylor series by inverting the matrix representation and solving Eq. 12 with a polynomial. 
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   Where m gives a good approximation of the curve where the coefficient am+1 

diminishes if substituting x by x/y0, where y0 is the maximum height of the embankment.    
 
We conclude that f(x) affects the slip surface, geometry, and topography, but we do not know 
how much. Also, the slip surface is prescribed, not guessed at. Examples will follow. 
 
Examples 1: 
 
The solution for f(x) = 0 and φ = 0 will be sought. Note: the ordinary method of slices gives the 
same answer as other methods. Fig 2 shows the embankment for λ = 0. 

 

 
Fig 2 Slip Surface for f(x) = 0,  φ = 0 and λ = 0 

 
From Eq. 12 yields, 
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If set λ = 0, the solution yields: 
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Where h is a constant, and the slip surface becomes: 
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Where k is a constant of integrations. The factor of safety is: 
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Where the vertical portion at h in Fig. 2 is taken as having a cohesion c. Note that a circle gives 
3.83 instead of 3.845; thus, λ ≠ 0 will be calculated in the next examples. Also: note the slip 
surface does not look like a circle or log spiral and is 90 degrees to the top surface. Fm exact is 
not calculated in this exercise. 
 
 
Example 2: 
  
When considering λ ≠ 0 in example 1 and using the Euler equation of Eq. 12, it yields: 
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Where in here λ is a new constant. Eq. 16 yields: 
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Working with a fourth-order Taylor polynomial approximation series, so let 
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Now let 
 

)1(3 2

53

0 yyy

yy

y

x
g


















 ………………………………………………………………. (22) 

 
g(x/y0) can be expressed with a Taylor approximation as 
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From Eq. 17, 20 and 22 
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Thus, pick a1 and λ given y0, find a2 from Eq. 24, substitute in Eq. 25, find a3 and substitute in 
Eq. 26 and find a4. Set y = 0 in Eq. 18, find the proper root x0, and minimize F in Eq. 1 using Eq. 
18 and 19. 
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To compare with example 1, the solution for a fourth-degree polynomial for λ = 0 is: 
 
y0 = 20 
 
a1 = -0.85   (on bottom 40.36o) in example 1 it was -0.6716 (33.885o) 
 
a2 = -0.207 
 
a3 = -7.728 x 10-3 

 

a4 = -3.469x 10-4 
 
x0 (at y = 0) = 0.949 y0 in example 1 it was 0.866 y0 (at surface tanα = 1.289 or 52.19o ) 
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So, the result shows the fourth-order polynomial approximation is 1.5% higher than example 1. 
In order to be closer to F of example 1, more terms are needed in the Taylor series polynomial. 
All numbers are close and not obtained from an algorithm, so there could be computation or 
derivation errors. The effect of λ has a solution as follows: 
 
y0 = 20 
 
λ = -19.55 
 
a1 = -0.683   (on bottom 34.33o) 
 
a2 = -0.38 
 
a3 = -0.027 

 

a4 = -8.035 x 10-4 
 
x0 (at y = 0) = 0.94 y0 (at surface tanα = 1.526 or 56.76o ) 
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Or F is lower for using λ but not quite as example 1 because more terms are needed in the 
polynomial. 
 
Example 3: 
  
We seek a different solution than Example 2. Thus, considering λ ≠ 0 in example 1 and using the 
Euler equation of Eq. 12, it yields: 
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Where in here λ is a new constant. Eq. 28 yields: 
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Working with a fourth-order Taylor polynomial approximation series, so let 
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g(y/y0) can be expressed with a Taylor approximation as 
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From Eq. 29, 32  and 34 
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                                               ………………………………………………………………….(38) 
 
Thus pick a1 and λ gave y0, find a2 from Eq. 36, find a3 in Eq. 37, and find a4 in Eq. 38. Set 0x  
in Eq. 31 and find the proper root y and make sure it is negative and minimize F in Eq. 1 using 
Eq. 31. 
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The effect of λ has a solution as follows: 
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y0 = 20 
 
λ = 17.5 
 
a1 = -0.35 (at surface tanα = 2.857  or 70.71o this is closer to 90o similar to example 1) 
 
a2 = -0.571 
 
a3 = 0.01 

 

a4 = -4.535 x 10-4 

 

a0 = - a1 - a2 - a3 - a4 = 0.912 @ y = y0 and x = 0 in Eq. 30, or x0 = 0.912 y0  
(it was x0 = 0.938 y0 in example 2 by solving the fourth-order polynomial of Eq. 18 with x = x0 

and y = 0. 

 
464.1432 4321
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yy
  or α0 = 34.335o  (at bottom α0 = 34.33o in Example 2) 
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Thus, this polynomial approximation gave a factor for F of 3.808 less than a circle of an F factor 
of 3.83, and the Variational method works.  
 
Note: λ takes a positive value due to the following: 
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Conclusion: 
 
Geometry affects the shape of the slip surface, but we do not know how much. Also, from the 
example shown, one may conclude that maximizing Max(∫F2), independent from c and φ, is all 
that is needed and adds a safety factor. It is not correct; the example shows otherwise. Also, 
generalization per one condition is not acceptable for one condition, and when including φ, the 
difference between a circle and a log spiral can be 13%. For example, the slip surface can be 
circular on the bottom and linear at the top, so what is the correct slip surface? Thus, deriving the 
correct slip surface is more desirable since the shape affects the safety factor. Note: finite 
element relies on Poisson's Ratio, and the Modulus of Elasticity has not produced a significant 
difference over the limit equilibrium method. The slip surface runs through the elements, is 
poorly defined, and has no plasticity. The slip surface is somewhere in the elements depending 
on the element's size. The finite element is still an approximation where Variational Method 
represents the exact slip surface given the Taylor series higher terms diminish. There is expected 
to be a difference with the Variational method and produce more reliable safety factors. If we say 
the hill is safe, we had better make sure. 
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Other issues: In many cases providing soil parameters is impossible to obtain. For example: 
1- Embankments underwater in a deep ocean environment 
2- Quik clay materials have no values. 
3- A crater in a far-away planet or moon in our solar system. 
4- Generally, boring logs are impossible to drill because of government or public restrictions. 
5- No knowledge of soil below  
 
This situation can be handled as in Example 1, c has to be estimated because if φ and c are zero, 
it would be like water.  
 
Photos showing slip surface from Soil Mechanics, SI Version book by T. William Lambe and 
Robert V. Whitman, Massachusetts Institute of Technology, With the assistance of H. G. Poulos, 
University of Sydney, John Wiley & Sons, Inc. SI Version Copyright © 1979, pp 164 and pp 
190. 
 
It is a slope stability failure curve or a stress failure curve. It looks like it is similar to my slope 
stability curve. Per Colomb stress failure curve, it would be a line. Failure curves in the 
following photos are misunderstood. 
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