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Abstract: The paper addresses the problem of soil pressure exerted on timber lagging or other
supporting an open cut. Using an elastic approach, the analysis determines the pressure behind lagging,
demonstrates the existence of arching, and investigates the influence of different parameters on the
extent of arching. Exact solutions, first for one bay of lagging and then for infinite number of bays of

lagging are presented. Numerical examples are provided.

Introduction:

To design a retaining wall satisfactorily, the pressure exerted by the soil mass on the wall must be
known. If the wall cross section is constant along the length of the wall, the pressure is assumed to
vary only with depth and to be independent of position along the length of the wall. The classical
methods for finding the distribution of horizontal pressure, such as Rankine and Coulomb methods,

are based on the assumption that friction is fully mobilized.

Temporary shoring walls are frequently made from soldier piles with timber lagging spanning between

them; see Fig. 1. In this the soil pressure varies along the wall, because of the flexibility of the lagging.
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Collapse of the soil is prevented partly by the resistance of the lagging, and partly by the soil itself
arching between the soldier piles. Both site observations [6] and White's discussion [7] lead to this

conclusion.

This redistribution of pressure, known as arching [4], is related to the way shoring is usually
constructed. The lagging beams are placed on the back face of the front flange of soldier piles. A slight
overcut is made behind the flange to facilitate placement of the boards. They are inserted diagonally
and then rotated to their final horizontal orientation. Alternatively, the lagging can be installed in front
of the pile after welding a threaded stud to the pile. A nut and plate are placed to hold the lagging to
the pile. In both cases, the intervening space behind the boards is filled with soil. The soil should
completely fill the void, but should not be packed so tight as to induce flexure. Similar loading occurs
when backfill is placed against a retaining wall and is compacted layer by layer. This may develop high
lateral earth pressures as explained by Brown [1]. A third way of placing lagging occurs in shafts. The
lagging is installed vertically in the shaft, then a circular steel ring is put_together at the bottom of the
shaft, raised up to the proper position and then shims are put in to ensure contact between soil, lagging

and ring.
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FIG. 1 Approximate distribution of soil pressure.



If the soil behaves like an equivalent fluid, the vertical distribution of pressure on the lagging does not
change as the cut deepens and the pressure on the lagging is zero when it is installed. However time
dependent movements of the soil may occur. Any changes in the vertical distribution of pressure, due
to the time dependent movement of soil or due to deepening of the cut will cause pressures on the
lagging. This in turn gives rise to a redistribution of load, resulting in decrease of pressure at mid span
of the lagging and a corresponding increase at the soldier piles. The vertical distribution of horizontal
pressure on the lagging and soldier piles is about the same as on a wall with constant cross section

namely, trapezoidal, (Fig.1) triangular, rectangular, etc.

Lagging is presently designed empirically. The simplest ways to account for its flexibility are to reduce
the design earth pressure or to increase the allowable lagging stresses by some arbitrary factor. The
former is more common [2,5], and a 50% reduction is common. The New York city transit authority
takes the latter approach, and increases the allowable flexure stress in the lagging by 50%. This

method is more costly than taking 50% reduction on the earth pressure.

The objective of this paper is to perform a rational analysis of pressure behind lagging, to demonstrate
the existence of arching, and to investigate the influence of different parameters on the extent of
arching. Classical small deflection elasticity is used for the analysis. Although soils behave as linear
elastic materials only at small strains, the rationale for the use of elastic theory is the tractability of the

solution. A linear constitutive relation is usually chosen because of the lack of defensible alternatives.

The response of the lagging is calculated here first for a single bay of lagging between two soldier

piles, then for multiple bays. In each case both the exact solution and a simpler approximate one based



on collocation functions are developed.

Exact Solution-One Bay Lagging:

The problem is to find the bending moments in the lagging and the pressure exerted by the soil. This
amounts to satisfying equilibrium and compatibility in the soil mass, together with the boundary
conditions. A plan view of a retaining wall, consisting of a single bay of lagging restraining a soil
mass, is shown in Fig. 2. Let the displacement of the soil on the lagging at y = 0 be vy(z) for

-b <z < b. The back of the wall is assumed to be frictionless.

FIG. 2 Plan View of a Wall Consisting of a Single Bay of

Lagging: Soil Displacement and Boundary Conditions.

Equilibrium and compatibility within the soil mass can be satisfied by the stress function [3]
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Where D(«) is an arbitrary constant to be found later. ® satisfies the bi-harmonic equation:
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where 8 = (1 - 1)/Es, p = u(1 + p)/Es, 1 is Poisson's ratio and E; is the soil modulus. oy, 0, are the
direct stresses and z,y is the shear stress. ¢ is the strain in the y direction. These values for R and p are
appropriate for a horizontal slice of soil which exhibits plane strain behavior. For plane stress,

R =1/Esand p = wE;. The true three dimensional state of stress lies somewhere between these two,
and the two dimensional representation used here is thus an approximation. Values of 3 and p

appropriate for some intermediate condition could easily be used.



Solving for the displacement v(z) aty = 0 in the y direction, yields
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The value of D(«) can be found by imposing the boundary conditions at the back of the wall. The

displacement there, vo(z), is symmetrical about z = 0 and is represented by its Fourier transform as
Vo = (2/7)[ 0050z dar [ Vo (A) COS A AA ..o ®)
Comparing this with Eq. 7 yields
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Substituting this value in Eq. 3, integrating the Laplace transform then setting y = 0 and adding the

uniform pressure p, yields
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Where p is the horizontal pressure of the soil, and is positive.

This pressure acts as a load on a piece of lagging s wide (in the x direction) so
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Where E is the modulus of elasticity of the lagging and I is its moment of inertia. This integral

equation in vy cannot be solved directly so a series solution is obtained using

Vo (2) = —520{%}2'

i=0

where 6=(5pb*s)/(24EI1) which is the central deflection of a beam of length 2b due to a uniform load,

and ¢; are constants to be determined. Integrating Eq. 11 and replacing the natural log terms by their

Taylor series expansions eventually gives
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Where 1 =z/b, Cyand C; are constants of integration. Now combining Eq. 12 and Eq. 13 gives
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Where C, = -sh®C,/(¢El), C, =-C, /5, A=sb*/(2REI) and B=r/(2A).
By equating the coefficient of 7% on each side of Eq. 14, the following infinite system of linear

equations is obtained:
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The true solution to this set of equations is obtained by taking an infinite number of ¢; and the
corresponding square matrix. Tests with a finite number of o; showed that the o; diminish rapidly with
increasing i, regardless of the number of equations used.

Secondly, ignoring the «; corresponding to high i values has very little influence on the numerical
value obtained for the first, more important terms in the ¢; series. 30 terms were found to give at least
4-digit accuracy. For A=16.5 (the most sensitive condition), Co and C; for a simply supported beam
were found to be -0.4812 and 0.2297, leading to R = Mmax/(pb?/2) = 0.20053, and

Rv= Vmax/(-pb) =0.50494, and ¢,(0) = 0. Fig. 3 shows the modification factors Ry, and R, of maximum




shear and moment divided by the maximum shear and moment of a uniformly loaded simple beam of

length 2b and pressure p, versus A.
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FIG. 3 Dimensionless Plot of Modification factors (R, and Ry,) — One Bay Lagging
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Approximate Solution using collocation Functions:

The exact solution outlined above suffers from the disadvantage that, in the matrix equation for «;, the
coefficients in the series for vy(z) the deflected shape of the lagging, are difficult to find. An alternative
is to start with an approximate, kinematically admissible solution, and then to develop successive

improvements to it. This may be done by substituting the approximate v, for vo(2) in Eq. 11, and

integrating four times to obtain a better v, (z) . Starting with a parabola

A G s R B 7 L DO (16)

Where n = z/b and d, is a dimensionless constant to be determined. Substituting in Eq. 11 and

integrating with respect to z yields the shear

&
V()= %vg'(n) - ﬂ—ﬂovvg'(n) Y S (17)

|

When integrating Eq. 17 to obtain the deflection, two non-zero constants of integration will be

1+7

2
Where w;'(n) = {n+1—nln
1-7

2

obtained, C, and Cs. These constants can be determined from the boundary conditions of a simple span

beam, thus
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The improved approximation for the deflection then becomes

Ty (7) = dy 8 [AW, (1) + Ay (<17 154+ 6715 1) | (20)

Where A=sb®/(2BEI), d, =1/d,. Note that wo and w, are zero at 5 =1. If the solution was exact,
V,(z) and v, (z) would be identical. Since it is approximate, the error between v, (z) and Vv, (z) can be

minimized in a least squares sense to give

Uo = 1/(0.2030123A + 255/248) oreesesereeeooeeeeeeeeeeeeeeeeeeseessssssseeesssssseseeeee e e (1)

By replacing ¢ by 5pb*s/(24El) in Eq. 16, the end shear at # =1 divided by -pb is obtained

R = Ve _ 0.1326A N
"~ _pb  0.2030123A+ 255/ 248

Similarly the midspan moment at 5 = 0 divided by pb®2 can be found using C, of Eq. 18
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M 0.211A
R, = - = +1
0.5pb 0.2030123A+ 255/248

These are compared in Table 1 with the exact values of the modification factors R, and Ry. The
maximum error is 0.8%, suggesting that the approximate results are quite accurate enough for practical

purposes.
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Table 1

Comparison of modification factors on Shear and Moment
A Ry Exact Ry Approx R Exact Rm Approx
0 1 1 1 1
2 0.81976 0.81509 0.70068 0.70577
4 0.71865 0.71178 0.53476 0.54137
6 0.65356 0.64582 0.42949 0.43640
8 0.60790 0.60005 0.35686 0.36357
10 0.57392 0.56643 0.30381 0.31008
12 0.54752 0.54069 0.26343 0.26913
14 0.52632 0.52036 0.23171 0.23676
16 0.50885 0.50388 0.20616 0.21055
16.5 0.50494 0.50024 0.20053 0.20475

Differentiation of Eq. 17 gives the pressure on the back of the lagging

5 A
/p= 2-7l O ¢!
o/ 12%{0.2030123A+255/248}[ 7 } 24

and is shown as a function of # in Fig. 4 for various A values. A is a measure of the relative stiffness of
the soil and lagging. It is zero when the lagging is very stiff, in which case the soil pressure along it is
uniform. When A reaches 16.5, the soil is stiff enough to generate extensive arching action, and the

soil pressure at midspan of the lagging drops to zero. The solutions for values of A larger than 16.5 are

14



not valid because they imply tension between soil and lagging. This is unlikely in practice.
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FIG. 4 Plot of Pressure Versus # — One Bay Lagging
Infinite Number of Bays of Lagging:
In practice, lagging is likely to exist over a number of adjacent bays, instead of just one bay. The
pressure behind it and the moments and shears in it can be found using techniques similar to those
outlined above. The displaced shape along the lagging bays is now periodic and symmetric about the y

axis (see Fig. 5), so a Fourier cosine series instead of a Fourier integral is used. Therefore

Vo(2) = D8, COSULZ covvvvvvvvvveemmmsmiissssssssssseeessssssssssssssss s (25)
n=p
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Where o, = nz/(b+t), and ¢ is a symbol indicating at the n =0 term the coefficient ay is replaced by

ao/2. The stress function

= D
D= T (L4 @ Y) €7 COSZ oo (26)

e Oy,

satisfies the bi-harmonic equation and the boundary conditions. Stresses are given by

Oy == Dy (L0 Y) €7 COSAYZ v (27)
n=p
0, == Dy (L= Y) €7 COSQZ e (28)
n=p
so that
o = D,
vo(z)z—j0 £,0Y =D T2 B COSGZ worvrvvssvrnssivssssisessssssssssssisss s (29)
n=¢ an

Combining Eq. 25 with 29 shows that

DTN 3 OO (30)
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from which, when the uniform pressure is added,
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O AZ = —P(D + 1) o (32)

the first term in the series of Eq. 31 must be zero, so the lower summation limit can be changed to 1.
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FIG. 5. Plan View of Displacement of Soil Mass for a Wall

Consisting of Soldier Piles and Lagging.
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From the Fourier series definition a, can be written as
a, =—— [, (1) cosa, 2 dA (33)
"= 1plo” DA A

Substituting Eq. 33 in 31 and integrating twice with respect to z to find the moment, yields

El, COSa AcCoSax, 2z pz?
—_— L —dA - +C
s b),eZI a, 2 !
e (34)
1 _ cos[ﬂnt(lgz)} cos[ﬂnt(lgz)} oz
+ +
v A +
"~ 272p %0 (“4) nzzll n n 2 N

Where C, is a constant of integration. Since z( 4 + z)/(t+b) is less than 2z for all 1 and z the identity

can be used. Thus Eq. 34 can be written as

El 7(A+12) pz?
_Vo(z)__—j vo(l)ln[ZSln (Hb)}om— HC e (36)

and the shear is
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—Vg(z) = 254 D) (;L )I Vo (4)co [M} ol o T (37)

and by using integration by parts the stress is

Elvo(z)= "(A) ot[m} BA = Do (38)

4 ,g(t b) -[ 2(t+b)

Eq. 38 is a statement of equilibrium of forces normal to the lagging, expressed in terms of the
unknown displacement field vo(z). In parallel with the solution for a single bay, it is possible either to
assume an approximate function (eg a parabola) for vy(z) and then to improve it or to find the exact

solution. If the parabolic collocation function

Vg (2) = =020 [1-(Z/D)] cvvvoeereeeereeeeeseeesee e (39)

is used for vo(z) in Eq. 37, and the improved approximation is obtained by integrating and imposing the
symmetric simple beam boundary conditions on vy(z), then the error between the two estimates

V,(z) and Vv, (z) is minimized to give dj,

19
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Where A=sb®/(2REI), I'=t/b, and 5=5sb’p/(24EI). In deriving Eq. 40 from Eq. 38, the cot function was
replaced by its power series expansion. F; are dimensionless coefficients derived from those

of that expansion. Values of the first 15 terms are shown in Table 2. Then

o,(2=0)=p

5Ad1 J‘l
-1

m ot L+ T AU — P e (41)

Rv — Vmax — EIVO(b) — 5Ad1 Il (1_u2)cot 7Z'[1+U] AU T i (42)
— pb —spb 48[1+1]7 2[1+17]
sin z[1+u]
_EwO M 5Adljl A—u?)in—2BC 0 Gy g (43)
0.5spb 0.5pb 127 72 sin
2[1+17]

These values depend on both A (the relative stiffness of soil and lagging) and I" (=t/b, the ratio of

soldier pile flange width to lagging span). They can be expressed as
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R, = mex _ T (44)
“pb a2
248
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Where the coefficients K, S, and M, which depend only on I" alone, are given in Table 3. When I'
becomes large, it represents wide piles and short-span lagging, and K, S, and M are seen to approach
the values used in Eqgs. 22 and 23, as they should. The maximum value A for which the solution is
valid is the one which gives a zero pressure against the lagging at mid span. It is found by setting the

right hand side of Eq. 41 to zero

A = ;Z: [z A[L+T]? } ................................................................................................... (46)

Where A; are dimensionless coefficients, the first 15 values of which are calculated and shown in

Table 2. The value of Anax for different values of T can be found in Table 3.

The exact solution to Eq. 36 can be found by methods similar to those used for the single bay problem.
It is simplest to do it for a specific value of I". For I'=0, the domain of z in Eq. 25 is the same as the
domain of z in the deflection found by integrating Eq. 34 with respect to z. Thus the exact solution for

I'=0 can be expressed as a Fourier series. The results are

21



ﬂz—ZA
P

S (1"

n=1

pb*

(m)*C,

(m)® + A b

Table 2

Coefficients for infinite lagging

i Fi A

0 -0.2030123 0.0622459
1 0.0727221 0

2 0.0139759 0.0067985
3 0.0055064 0.0043017
4 0.0027687 0.0025375
5 0.0015905 0.0015433
6 0.0009971 0.0009872
7 0.0006657 0.0006635
8 0.0004662 0.0004657
9 0.0003390 0.0003389
10 0.0002541 0.0002541
11 0.0001954 0.0001954
12 0.0001534 0.0001534
13 0.0001226 0.0001226
14 0.0000996 0.0000996
15 0.0000819 0.0000819
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Table 3

Modification Factors for Moment and Shear Coefficients

23

r Anax K S M
100 | 1652 0.2030052 0.1326220 0.2103711
10 16.52 0.2024103 0.1320268 0.2097763
1 16.39 0.1838596 0.1130738 0.1912869
55 | 16.11 0.1698144 0.0980986 0.1773764
5 16.04 0.1673006 0.0953465 0.1748962
45 | 1596 0.1644723 0.0922199 0.1721091
4 15.86 0.1612703 0.0886387 0.1689586
35 | 1573 0.1576189 0.0844972 0.1653727
3 15.58 0.1534204 0.0796510 0.1612586
25 | 1538 0.1485441 0.0738954 0.1564934
2 15.12 0.1428104 0.0669248 0.1509093
15 | 1477 0.1359604 0.0582474 0.1442670
1 14.31 0.1275980 0.0469715 0.1362017
0 12.73 0.1030738 0.0000002 0.1124564
K
ZAZ = m[(m§3b+ Al ﬂgz _% """""""""""""""""""""""""""""""""""""""""""
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Atz = b, M(z)=0 and Cs/(pb?) can be found as
< m
2)
C5 _ n=1 (ﬂn) tA (50)

pb2 - 0 1
1+2A —————
nZ:;‘(zzn)3+A

Amax In the exact solution (Eq. 47) gives Amax=11.53, compared to 12.73 with the approximation
method at I'=0. The error in Amax is thus 10% but that in R, and Ry, is less than 2% . Also, from the
exact solution for a single bay lagging, or for large I" and multiple bays, the error was less than 1%.
Thus when using Table 3 to obtain the modification factors the approximate and exact solutions
should be expected to differ by 1% to 2%. Plots of R, and Ry, are shown in Figs. 6 and 7, in which the
curves end at 0.91-Anmax, the point where the solution ceases to be valid including 10% reduction to

account for the error discussed above.

Effect of including friction:

Finn [3] shows that the presence of friction between soil and wall requires a minor change in the stress

function, due to &,= 0, which leads to
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0 2 _
ay=IO—D{ﬂfp+ay}e“ycomzda ................................................................................ (51)

Solving for D shows that the solution has the same form as in the frictionless case but 1/(2B) is

replaced by 2R/[(313 - p )(B + p )]. Thus Figs. 3 4 6 and 7 may be used, provided that A is calculated as

_ 2 fsh® 52)
BB-p)(B+p)EI

The conditions here are slightly different from those addressed by Finn [3] since &, is not quite zero.

Thus Eq. 52 is not strictly valid, however it acts as an upper bound on A, and so is useful.
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FIG.6 Dimensionless Plot of Modification Factor R, — Infinite Bay Lagging
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FIG.7 Dimensionless Plot of Modification Factor Ry, — Infinite Bay Lagging
Examples:

Note: In the two examples which follow, p is taken as kp y X, where ko = u/(1-1) and y = unit weight of
the soil, i.e. a triangular distribution of pressure. This is improbable in practice because when the
lagging is installed at the bottom of the cut, the pressure behind it is zero, not ko y X. However, time-
dependent movement of the soil will occur, increasing the pressure above this initially zero value. The
triangular vertical distribution represents an upper bound for a non-yielding wall, and is used here for

the sake of example.

Example 1: A temporary shoring with soldier piles that are 8'-0" o.c. and pile flange = 8.73". Wall

26



height is 15 ft and sand is behind the wall with ko=0.5, y =120pcf, ©=0.3, Ese#=1111psi. Lagging is
3x12 Full Sawn, Douglas Fir #2 E=1800ksi, F,=1250psi. These allowable stresses to be increased by
15% for short duration (two month) loading. Ignoring friction between lagging and soil,

s=12", b=43.63", t=4.37", T=t/b=0.1, 1=27 in*.

1/R=E¢/(1-4%)=1221 psi.

_sb®  1221(12)(43.63)° 19,63
2PEl  2(1,800,000)(27)

From Figs. 6 and 7: R,=0.78 and R,=0.35

p=0.5(120)(15)/1000=0.9 ksf

Vinax=0.78(0.9)(1)(3.64)=2.56 K, Mimax=0.35(0.9)(1)(3.64)%/2=2.08 k-ft

M/S,=2.08(12)/18=1.38 ksi < 1.25(1.15)=1.44

1.5Vma/A=1.5(2.56)/36=0.107 < 0.095(1.15)=0.109

Example 2: As Example 1, but including friction behind the wall

1p = Ed[u(1+1)] = 2849 psi. From Eq. 52
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2(12)(2849)(2849)(1221)(43.63)°

[3(2849) —1221][2849 +1221](1,800,000)(27)

From Figs. 6 and 7, A is in the region where tension in the soil will occur. Since this value of A is
considered as an upper bound, Amax IS used. In general if Amax IS used for values of A larger than Anmax, it

will give conservative modification values. Thus R,=0.77 and R,,=0.34 .

Empirical Method:

If R, = Ry = 0.5 in the forgoing examples, the 3"x12" lagging would have proved easily adequate in

shear, but too weak in flexure.

Discussion of Results for Lagging Walls:

Several points arise. First the beneficial effects of horizontal soil arching between piles have been

shown mathematically to exist. Field evidence supports this view, but has been able to provide only

empirical estimates of the extent of soil arching.

Second, the modification factors for shear and bending, R, and Ry, are not equal. R, is the larger,
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meaning that lagging is more likely to be shear critical than if R, and Ry, are assumed equal. This is
particularly true if the lagging is not new, because the ends may be damaged but the mid-span is less
likely to be. However, in many cases flexure will still control and then the reduction developed here
will result in thinner lagging than would be allowed by the empirical value of 0.50.

The calculations here were performed using linear elastic theory. The average horizontal pressure, p,
was assumed to be known a priori. It will depend on the way the wall is constructed, but does not
influence the arching of the lagging between piles. Computation of p would have to take into account
the details of the construction sequence being followed for a particular job. Research into this question

is needed.

Extend of the Solution to Other Problems:

Because the solution is derived from elasticity other type of lagging such as concrete or steel lagging is
applicable and the above charts can give a good representation of arching. For other elastic materials
besides soils the solution is also given. Two such examples are a sheet of ice behind stop logs and
suppose it is bricks or masonry instead of soils, channels instead of lagging and columns instead of
piles, where the lagging is a channel lintel. Then the arching factors can be achieved provided the

parameters for plain stress are utilized instead of plain strain.

Conclusions:

The distribution of horizontal soil pressure behind non-prismatic walls, such as those made from

soldier-piles and lagging, was investigated. Both approximate and exact equations were developed for
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the cases of a single-bay and multiple-bays walls. The results are expressed in terms of modification

factors R, and Ry, by which to multiply shears and moments in the lagging based on uniform soil

pressures behind the wall.

The main conclusions are:

1. Soil arching behind pile-and-lagging walls can contribute significantly to the carriage of soil loads

between the piles.

2. The extent of the arching is conveniently expressed by modification factors R, and R, to be applied

to basic shears and moments in the lagging, calculated on the basis of soil pressure which is uniformly

distributed in the horizontal direction.

3. The approximate method of calculation is computationally simpler than the exact and is quite

accurate enough for practical purposes.

4. Ry, is smaller than Ry, so care should be taken to check lagging for shear as well as bending stresses.

5. The Ry and Ry, values presented here are likely to permit smaller lagging than would the empirical

values in common use today.

6. Research is needed into the way in which the average horizontal soil pressure depends at any depth

on the wall construction sequences.

30



Appendix 1.-References

1. M. S. Aggour and C. B. Brown, "Analytical Determination of
Earth Pressure Due to Compaction", Proceedings of the Third
International Conference on Numerical Methods in Geomechanics/

AACHEN/ 2-6 April 1979, pp. 1167-1174.

2. Armento, William, "Design and Construction of Deep Retained
Excavations, "ASCE/SEAONC, Continuing Education Seminars,

November, 1970.

3. W. D. Liam Finn, "Boundary Value Problems of Soil Mechanics",

ASCE SM & FE #5 Journal of the Soil Mechanics and Foundations

Division, September, 1963, p. 3648

4. Richard L. Handy "The Arch In Soil Arching” ASCE Journal of

Geotechnical Engineering, March 1985, p302.

5. La Croix, Y. and Jackson, W., "Design and Construction of

Support Temporary Excavations in Urban Environment”, 3rd

31



Ohio Soil Seminar, October, 1972.

6. U. S. Department of Commerce, National Technical Information
Service, PB-257 212, "Lateral Support Systems and Underpinning
Vol Il & 1lI: Construction Methods™ D. T. Goldberg, et al.
Goldberg-Zoino & Associate, Inc., Newton Upper Falls, Mass.,

April, 1976, p. 29, Sect. 2.32.2, Vol. Il and p. 49, Vol. Il.

7. White, E. E., "Underpinning", Foundation Engineering, ed G. A.

Leonards, McGraw-Hill, pp. 826-893, 1962.

32



Notation:

_ sb®

_ZﬂEI;

A; = dimensionless coefficients;

A, = Area of lagging board;

Amax = Value of A when oy at y=0 and z=0 is zero;

a, = Fourier Series coefficients;

B = n/2A;

b = half of lagging span;

Coto Cs, C, and C, = integration constants;

D and D,, = an arbitrary constant for ®;

do, d,and d; = non dimensional constants used with an assumed
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displacement function;

E = Young's modulus for lagging;

Es = Young's modulus for soil;

F;i = dimensionless coefficients;

I = moment of inertia of lagging cross section;

I = integer counter;

] = integer counter;

K = dimensionless coefficient;

k = integer counter;

Ko = w/(1-1) the at rest coefficient of earth pressure;

In = natural logarithm;

M = dimensionless coefficient;
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Mmax = max moment at z=0;

n = integer counter;

p = average stress on lagging;

Rm = modification factor for moment;

Ry = modification factor for shear;

S = dimensionless coefficient;

Sx = section modulus of lagging;

s = width of lagging board in the x-direction.

t = half-width of rigid base, or half of pile flange;

u = dummy variable used in integration;

V() = shear strength function;
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Vmax = Max shear at z=b;

v = displacement function in the y-direction;

Vo =V at y=0;

v, = a function which approximats vo;

vV, =an improved function for approximating vo;

Wo(7) = a function of _ used for simplification;

X, y and z = axes of reference;

o = dummy variable used in integration;

a; = coefficients of the power series representation of the

displacement;

on = nrl(b+t) ;

R= (1-/12)/ES for plane strain and 1/Es for plane stress.
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y = unit weight of soil;

S = 5pb*s/24E!;

n =1zlb;

J = dummy variable used in integration;

1 = Poisson's ratio;

p = u(1+u)/Es for plane strain or w/E; for plane stress; and

o = normal stress;

7 = shear stress;

® = stress function,;

@ = a symbol indicating that the term a, at n=0 is replaced by ay/2;

37



