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Abstract: The paper addresses the problem of soil pressure exerted on timber lagging or other 

supporting an open cut. Using an elastic approach, the analysis determines the pressure behind lagging, 

demonstrates the existence of arching, and investigates the influence of different parameters on the 

extent of arching. Exact solutions, first for one bay of lagging and then for infinite number of bays of 

lagging are presented. Numerical examples are provided. 

 

Introduction: 

To design a retaining wall satisfactorily, the pressure exerted by the soil mass on the wall must be 

known. If the wall cross section is constant along the length of the wall, the pressure is assumed to 

vary only with depth and to be independent of position along the length of the wall. The classical 

methods for finding the distribution of horizontal pressure, such as Rankine and Coulomb methods, 

are based on the assumption that friction is fully mobilized. 

 

Temporary shoring walls are frequently made from soldier piles with timber lagging spanning between 

them; see Fig. 1. In this the soil pressure varies along the wall, because of the flexibility of the lagging. 

                     
1Structural, Electrical and Foundation Engineer, FAC Systems Inc. Seattle, WA 
 
2Professor of Civil Engineering, University of Washington, Seattle, WA 98195 



 2 

Collapse of the soil is prevented partly by the resistance of the lagging, and partly by the soil itself 

arching between the soldier piles. Both site observations [6] and White's discussion [7] lead to this 

conclusion. 

 

This redistribution of pressure, known as arching [4], is related to the way shoring is usually 

constructed. The lagging beams are placed on the back face of the front flange of soldier piles. A slight 

overcut is made behind the flange to facilitate placement of the boards. They are inserted diagonally 

and then rotated to their final horizontal orientation. Alternatively, the lagging can be installed in front 

of the pile after welding a threaded stud to the pile. A nut and plate are placed to hold the lagging to 

the pile. In both cases, the intervening space behind the boards is filled with soil. The soil should 

completely fill the void, but should not be packed so tight as to induce flexure. Similar loading occurs 

when backfill is placed against a retaining wall and is compacted layer by layer. This may develop high 

lateral earth pressures as explained by Brown [1]. A third way of placing lagging occurs in shafts. The 

lagging is installed vertically in the shaft, then a circular steel ring is put together at the bottom of the 

shaft, raised up to the proper position and then shims are put in to ensure contact between soil, lagging 

and ring. 

 

 

 

 



 3 

    

    

  PLAN 

                            

 

 

SECTION 

 

FIG. 1 Approximate distribution of soil pressure. 
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If the soil behaves like an equivalent fluid, the vertical distribution of pressure on the lagging does not 

change as the cut deepens and the pressure on the lagging is zero when it is installed. However time 

dependent movements of the soil may occur. Any changes in the vertical distribution of pressure, due 

to the time dependent movement of soil or due to deepening of the cut will cause pressures on the 

lagging. This in turn gives rise to a redistribution of load, resulting in decrease of pressure at mid span 

of the lagging and a corresponding increase at the soldier piles. The vertical distribution of horizontal 

pressure on the lagging and soldier piles is about the same as on a wall with constant cross section 

namely, trapezoidal, (Fig.1) triangular, rectangular, etc. 

 

Lagging is presently designed empirically. The simplest ways to account for its flexibility are to reduce 

the design earth pressure or to increase the allowable lagging stresses by some arbitrary factor. The 

former is more common [2,5], and a 50% reduction is common. The New York city transit authority 

takes the latter approach, and increases the allowable flexure stress in the lagging by 50%. This 

method is more costly than taking 50% reduction on the earth pressure. 

 

The objective of this paper is to perform a rational analysis of pressure behind lagging, to demonstrate 

the existence of arching, and to investigate the influence of different parameters on the extent of 

arching. Classical small deflection elasticity is used for the analysis. Although soils behave as linear 

elastic materials only at small strains, the rationale for the use of elastic theory is the tractability of the 

solution. A linear constitutive relation is usually chosen because of the lack of defensible alternatives. 

 

The response of the lagging is calculated here first for a single bay of lagging between two soldier 

piles, then for multiple bays. In each case both the exact solution and a simpler approximate one based 
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on collocation functions are developed. 

 

Exact Solution-One Bay Lagging: 

The problem is to find the bending moments in the lagging and the pressure exerted by the soil. This 

amounts to satisfying equilibrium and compatibility in the soil mass, together with the boundary 

conditions. A plan view of a retaining wall, consisting of a single bay of lagging restraining a soil 

mass, is shown in Fig. 2. Let the displacement of the soil on the lagging at y = 0 be v0(z) for 

 -b < z < b. The back of the wall is assumed to be frictionless. 

 

 

 

FIG. 2   Plan View of a Wall Consisting of a Single Bay of 

Lagging: Soil Displacement and Boundary Conditions. 

 

Equilibrium and compatibility within the soil mass can be satisfied by the stress function [3] 

 

∫
∞ −+=Φ
 

0 2  cos)1()( ααα
α

α α dzeyD y   ………..……………………………...……………. (1) 

b -b 

τyz = 0 

v0(z) 

z 

 y 
σy                  = 0 

         y  ∞ 
 v                   = 0 

         y  ∞ 
 



 6 

 

Where D(α) is an arbitrary constant to be found later. Φ satisfies the bi-harmonic equation: 
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where ß = (1 - μ2)/Es,  ρ = μ(1 + μ)/Es, μ is Poisson's ratio and Es is the soil modulus. σy, σz are the 

direct stresses and τzy is the shear stress. εy is the strain in the y direction. These values for ß and ρ   are 

appropriate for a horizontal slice of soil which exhibits plane strain behavior. For plane stress,  

ß = 1/Es and  ρ = μ/Es. The true three dimensional state of stress lies somewhere between these two, 

and the two dimensional representation used here is thus an approximation. Values of ß and ρ 

appropriate for some intermediate condition could easily be used. 
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Solving for the displacement v(z) at y = 0 in the y direction, yields 
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The value of D(α) can be found by imposing the boundary conditions at the back of the wall. The 

displacement there, v0(z), is symmetrical about z = 0 and is represented by its Fourier transform as 
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Comparing this with Eq. 7 yields 
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Substituting this value in Eq. 3, integrating the Laplace transform then setting y = 0 and adding the 

uniform pressure p, yields 
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Where p is the horizontal pressure of the soil, and is positive. 

This pressure acts as a load on a piece of lagging s wide (in the x direction) so 
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Where E is the modulus of elasticity of the lagging and I is its moment of inertia. This integral 

equation in v0 cannot be solved directly so a series solution is obtained using 
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where δ=(5pb4s)/(24EI) which is the central deflection of a beam of length 2b due to a uniform load, 

and αi are constants to be determined. Integrating Eq. 11 and replacing the natural log terms by their 

Taylor series expansions eventually gives 
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Where bz /=η , C0 and C1 are constants of integration. Now combining Eq. 12 and Eq. 13 gives 
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Where EI)/(C-sbC δ0
2

0 = , δ/11 CC −= ,  A=sb3/(2ßEI) and B=π/(2A). 

By equating the coefficient of i2η on each side of Eq. 14, the following infinite system of linear 

equations is obtained: 

 

 

1 0 0 0 → 0  α0  1  0  0 

0 1 0 0 → 0  α1  0  1  0 

-1 1 1/3-4·3·2·B 1/5 → 0  α2 = C1 0 + C0/2 0 -24B/5 1 

-1/3 -1 1 1/3-6·5·4·B → 0  α3  0  0  0 

↓ ↓ ↓ ↓ ↓ ↓  ↓  ↓  ↓  ↓ 

0 0 0 0 0 1  α∞  0  0  0 

                                                                                                                                     ............. (15) 

 

 

The true solution to this set of equations is obtained by taking an infinite number of αi and the 

corresponding square matrix. Tests with a finite number of αi showed that the αi diminish rapidly with 

increasing i, regardless of the number of equations used. 

Secondly, ignoring the αi corresponding to high i values has very little influence on the numerical 

value obtained for the first, more important terms in the αi series. 30 terms were found to give at least 

4-digit accuracy. For A=16.5 (the most sensitive condition), C0 and C1 for a simply supported beam 

were found to be -0.4812 and 0.2297, leading to Rm = Mmax/(pb2/2) = 0.20053, and  

Rv = Vmax/(-pb) =0.50494, and σy(0) ≈ 0. Fig. 3 shows the modification factors Rm and Rv of maximum 
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shear and moment divided by the maximum shear and moment of a uniformly loaded simple beam of 

length 2b and pressure p, versus A. 
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FIG. 3 Dimensionless Plot of Modification factors (Rv and Rm) – One Bay Lagging 
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Approximate Solution using collocation Functions: 

The exact solution outlined above suffers from the disadvantage that, in the matrix equation for αi, the 

coefficients in the series for v0(z) the deflected shape of the lagging, are difficult to find. An alternative 

is to start with an approximate, kinematically admissible solution, and then to develop successive 

improvements to it. This may be done by substituting the approximate 0v  for v0(λ) in Eq. 11, and 

integrating four times to obtain a better )(~
0 zv . Starting with a parabola 

    

])(1[  )( 2
00 ηδ −−= dzv ............................................................................................................. (16) 

 

Where η = z/b and d0 is a dimensionless constant to be determined. Substituting in Eq. 11 and 

integrating with respect to z yields the shear                              
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When integrating Eq. 17 to obtain the deflection, two non-zero constants of integration will be 

obtained, C2 and C3. These constants can be determined from the boundary conditions of a simple span 

beam, thus 
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The improved approximation for the deflection then becomes 
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Where A=sb3/(2ßEI), 00 /1 dd = . Note that w0 and 0w ′′ are zero at η =1. If the solution was exact, 

)(0 zv and )(~
0 zv  would be identical. Since it is approximate, the error between )(0 zv and )(~

0 zv can be 

minimized in a least squares sense to give 
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By replacing δ by 5pb4s/(24EI) in Eq. 16, the end shear at η =1 divided by -pb is obtained 
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Similarly the midspan moment at η = 0 divided by pb2/2 can be found using C2 of Eq. 18 
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These are compared in Table 1 with the exact values of the modification factors Rm and Rv. The 

maximum error is 0.8%, suggesting that the approximate results are quite accurate enough for practical 

purposes. 
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Table 1 

Comparison of modification factors on Shear and Moment 

A Rv Exact Rv Approx Rm Exact Rm Approx 

0 1 1 1 1 

2 0.81976 0.81509 0.70068 0.70577 

4 0.71865 0.71178 0.53476 0.54137 

6 0.65356 0.64582 0.42949 0.43640 

8 0.60790 0.60005 0.35686 0.36357 

10 0.57392 0.56643 0.30381 0.31008 

12 0.54752 0.54069 0.26343 0.26913 

14 0.52632 0.52036 0.23171 0.23676 

16 0.50885 0.50388 0.20616 0.21055 

16.5 0.50494 0.50024 0.20053 0.20475 

 

Differentiation of Eq. 17 gives the pressure on the back of the lagging  
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and is shown as a function of η in Fig. 4 for various A values. A is a measure of the relative stiffness of 

the soil and lagging. It is zero when the lagging is very stiff, in which case the soil pressure along it is 

uniform. When A reaches 16.5, the soil is stiff enough to generate extensive arching action, and the 

soil pressure at midspan of the lagging drops to zero. The solutions for values of A larger than 16.5 are 



 15 

not valid because they imply tension between soil and lagging. This is unlikely in practice. 
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FIG. 4 Plot of Pressure Versus η – One Bay Lagging 

Infinite Number of Bays of Lagging: 

In practice, lagging is likely to exist over a number of adjacent bays, instead of just one bay. The 

pressure behind it and the moments and shears in it can be found using techniques similar to those 

outlined above. The displaced shape along the lagging bays is now periodic and symmetric about the y 

axis (see Fig. 5), so a Fourier cosine series instead of a Fourier integral is used. Therefore 
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Where αn = nπ/(b+t), and φ is a symbol indicating at the n = 0  term the coefficient a0 is replaced by 

a0/2. The stress function 

 

     

zey
D

n
y

n
n

n

n n αα
α

α

ϕ

cos )1( 2
−

∞

=
∑ +=Φ ............................................................................................ (26) 

 

satisfies the bi-harmonic equation and the boundary conditions. Stresses are given by 
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Combining Eq. 25 with 29 shows that 
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from which, when the uniform pressure is added, 
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the first term in the series of Eq. 31 must be zero, so the lower summation limit can be changed to 1. 

  

 

FIG. 5. Plan View of Displacement of Soil Mass for a Wall 

Consisting of Soldier Piles and Lagging. 

 

τyz = 0 

z 

y 

σy                  = 0 

         y  ∞ 
 v                   = 0 

         y  ∞ 
 

Soil 
Mass 

Soldier piles 
Timber 
lagging 

b b t t 
typical typical 



 18 

From the Fourier series definition an can be written as 
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Substituting Eq. 33 in 31 and integrating twice with respect to z to find the moment, yields 
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Where C4 is a constant of integration. Since π( λ ± z)/(t+b) is less than 2π for all  λ and z the identity 

 

∑
∞

=














−=

1 2
sin2lncos

k

z
k

kz ...................................................................................................... (35) 

 

can be used. Thus Eq. 34 can be written as 
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and the shear is                  
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and by using integration by parts the stress is 
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Eq. 38 is a statement of equilibrium of forces normal to the lagging, expressed in terms of the 

unknown displacement field v0(z). In parallel with the solution for a single bay, it is possible either to 

assume an approximate function (eg a parabola) for v0(z) and then to improve it or to find the exact 

solution. If the parabolic collocation function 
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is used for v0(z) in Eq. 37, and the improved approximation is obtained by integrating and imposing the 

symmetric simple beam boundary conditions on v0(z), then the error between the two estimates 
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Where A=sb3/(2ßEI), Γ=t/b, and δ=5sb4p/(24EI). In deriving Eq. 40 from Eq. 38, the cot function was 

replaced by its power series expansion. Fi are dimensionless coefficients derived from those  

of that expansion. Values of the first 15 terms are shown in Table 2. Then 
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These values depend on both A (the relative stiffness of soil and lagging) and Γ (=t/b, the ratio of 

soldier pile flange width to lagging span). They can be expressed as 
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Where the coefficients K, S, and M, which depend only on Γ alone, are given in Table 3. When Γ 

becomes large, it represents wide piles and short-span lagging, and K, S, and M are seen to approach 

the values used in Eqs. 22 and 23, as they should. The maximum value A for which the solution is 

valid is the one which gives a zero pressure against the lagging at mid span. It is found by setting the 

right hand side of Eq. 41 to zero 
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Where Ai are dimensionless coefficients, the first 15 values of which are calculated and shown in 

Table 2. The value of Amax for different values of Γ can be found in Table 3. 

 

The exact solution to Eq. 36 can be found by methods similar to those used for the single bay problem. 

It is simplest to do it for a specific value of Γ. For Γ=0, the domain of z in Eq. 25 is the same as the 

domain of z in the deflection found by integrating Eq. 34 with respect to z. Thus the exact solution for 

Γ=0 can be expressed as a Fourier series. The results are 
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Table 2 

Coefficients for infinite lagging 

i Fi Ai 

0 -0.2030123 0.0622459 

1 0.0727221 0 

2 0.0139759 0.0067985 

3 0.0055064 0.0043017 

4 0.0027687 0.0025375 

5 0.0015905 0.0015433 

6 0.0009971 0.0009872 

7 0.0006657 0.0006635 

8 0.0004662 0.0004657 

9 0.0003390 0.0003389 

10 0.0002541 0.0002541 

11 0.0001954 0.0001954 

12 0.0001534 0.0001534 

13 0.0001226 0.0001226 

14 0.0000996 0.0000996 

15 0.0000819 0.0000819 
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Table 3 

Modification Factors for Moment and Shear Coefficients 

Г Amax K S M 

100 16.52 0.2030052 0.1326220 0.2103711 

10 16.52 0.2024103 0.1320268 0.2097763 

1 16.39 0.1838596 0.1130738 0.1912869 

.55 16.11 0.1698144 0.0980986 0.1773764 

.5 16.04 0.1673006 0.0953465 0.1748962 

.45 15.96 0.1644723 0.0922199 0.1721091 

.4 15.86 0.1612703 0.0886387 0.1689586 

.35 15.73 0.1576189 0.0844972 0.1653727 

.3 15.58 0.1534204 0.0796510 0.1612586 

.25 15.38 0.1485441 0.0738954 0.1564934 

.2 15.12 0.1428104 0.0669248 0.1509093 

.15 14.77 0.1359604 0.0582474 0.1442670 

.1 14.31 0.1275980 0.0469715 0.1362017 

0 12.73 0.1030738 0.0000002 0.1124564 
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At z = b, M(z)=0 and C5/(pb2) can be found as 
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Amax in the exact solution (Eq. 47) gives Amax=11.53, compared to 12.73 with the approximation 

method at Γ=0. The error in Amax is thus 10% but that in Rv and Rm is less than 2% . Also, from the 

exact solution for a single bay lagging, or for large Γ and multiple bays, the error was less than 1%. 

Thus when using Table 3 to obtain the modification factors the approximate and exact solutions 

should be expected to differ by 1% to 2%. Plots of Rv and Rm are shown in Figs. 6 and 7, in which the 

curves end at 0.91⋅Amax, the point where the solution ceases to be valid including 10% reduction to 

account for the error discussed above. 

 

 

Effect of including friction: 

 

Finn [3] shows that the presence of friction between soil and wall requires a minor change in the stress 

function, due to εz = 0, which leads to 
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Solving for D shows that the solution has the same form as in the frictionless case but 1/(2ß) is 

replaced by 2ß/[(3ß - ρ )(ß + ρ )]. Thus Figs. 3 4 6 and 7 may be used, provided that A is calculated as 
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2 3

ρβρβ
β

+−
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The conditions here are slightly different from those addressed by Finn [3] since εz is not quite zero. 

Thus Eq. 52 is not strictly valid, however it acts as an upper bound on A, and so is useful. 
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FIG.6 Dimensionless Plot of Modification Factor Rv – Infinite Bay Lagging 
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FIG.7 Dimensionless Plot of Modification Factor Rm – Infinite Bay Lagging 

 

Examples: 

Note: In the two examples which follow, p is taken as k0 γ x, where k0 = μ/(1-μ) and  γ = unit weight of 

the soil, i.e. a triangular distribution of pressure. This is improbable in practice because when the 

lagging is installed at the bottom of the cut, the pressure behind it is zero, not k0 γ x. However, time-

dependent movement of the soil will occur, increasing the pressure above this initially zero value. The 

triangular vertical distribution represents an upper bound for a non-yielding wall, and is used here for 

the sake of example. 

 

Example 1: A temporary shoring with soldier piles that are 8'-0" o.c. and pile flange = 8.73". Wall 
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height is 15 ft and sand is behind the wall with k0=0.5,  γ =120pcf, μ=0.3, Es,eff=1111psi. Lagging is 

3x12 Full Sawn, Douglas Fir #2 E=1800ksi, Fb=1250psi. These allowable stresses to be increased by 

15% for short duration (two month) loading. Ignoring friction between lagging and soil, 

 

s=12", b=43.63", t=4.37", Γ=t/b=0.1, I=27 in4. 

 

1/ß=Es/(1-μ2)=1221 psi. 

 

 53.12
)27)(000,800,1(2
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From Figs. 6 and 7: Rv=0.78 and Rm=0.35 

 

p=0.5(120)(15)/1000=0.9 ksf 

 

Vmax=0.78(0.9)(1)(3.64)=2.56 k, Mmax=0.35(0.9)(1)(3.64)2/2=2.08 k-ft 

 

M/Sx=2.08(12)/18=1.38 ksi < 1.25(1.15)=1.44  

 

1.5Vmax/Al=1.5(2.56)/36=0.107 < 0.095(1.15)=0.109 

 

Example 2: As Example 1, but including friction behind the wall 

 

1/ρ  = Es/[μ(1+μ)] = 2849 psi. From Eq. 52 
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From Figs. 6 and 7, A is in the region where tension in the soil will occur. Since this value of A is 

considered as an upper bound, Amax is used. In general if Amax is used for values of A larger than Amax, it 

will give conservative modification values. Thus  Rv=0.77 and Rm=0.34 . 

 

Empirical Method: 

 

If Rv = Rm = 0.5 in the forgoing examples, the 3"x12" lagging would have proved easily adequate in 

shear, but too weak in flexure. 

 

Discussion of Results for Lagging Walls: 

 

Several points arise. First the beneficial effects of horizontal soil arching between piles have been 

shown mathematically to exist. Field evidence supports this view, but has been able to provide only 

empirical estimates of the extent of soil arching. 

Second, the modification factors for shear and bending, Rv and Rm, are not equal. Rv is the larger, 
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meaning that lagging is more likely to be shear critical than if Rv and Rm are assumed equal. This is 

particularly true if the lagging is not new, because the ends may be damaged but the mid-span is less 

likely to be. However, in many cases flexure will still control and then the reduction developed here 

will result in thinner lagging than would be allowed by the empirical value of 0.50. 

The calculations here were performed using linear elastic theory. The average horizontal pressure, p, 

was assumed to be known a priori. It will depend on the way the wall is constructed, but does not 

influence the arching of the lagging between piles. Computation of p would have to take into account 

the details of the construction sequence being followed for a particular job. Research into this question 

is needed. 

 

Extend of the Solution to Other Problems: 

 

Because the solution is derived from elasticity other type of lagging such as concrete or steel lagging is 

applicable and the above charts can give a good representation of arching. For other elastic materials 

besides soils the solution is also given. Two such examples are a sheet of ice behind stop logs and 

suppose it is bricks or masonry instead of soils, channels instead of lagging and columns instead of 

piles, where the lagging is a channel lintel. Then the arching factors can be achieved provided the 

parameters for plain stress are utilized instead of plain strain. 

 

Conclusions: 

 

The distribution of horizontal soil pressure behind non-prismatic walls, such as those made from 

soldier-piles and lagging, was investigated. Both approximate and exact equations were developed for 
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the cases of a single-bay and multiple-bays walls. The results are expressed in terms of modification 

factors Rv and Rm by which to multiply shears and moments in the lagging based on uniform soil 

pressures behind the wall. 

 

The main conclusions are: 

 

1. Soil arching behind pile-and-lagging walls can contribute significantly to the carriage of soil loads 

between the piles. 

 

2. The extent of the arching is conveniently expressed by modification factors Rv and Rm to be applied 

to basic shears and moments in the lagging, calculated on the basis of soil pressure which is uniformly 

distributed in the horizontal direction. 

 

3. The approximate method of calculation is computationally simpler than the exact and is quite 

accurate enough for practical purposes. 

 

4. Rm is smaller than Rv, so care should be taken to check lagging for shear as well as bending stresses. 

 

5. The Rv and Rm values presented here are likely to permit smaller lagging than would the empirical 

values in common use today. 

 

6. Research is needed into the way in which the average horizontal soil pressure depends at any depth 

on the wall construction sequences. 
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Notation: 

EI
sbA
β2

3

= ; 

 

Ai = dimensionless coefficients; 

 

Al = Area of lagging board; 

 

Amax = value of A when σy at y=0 and z=0 is zero; 

 

an = Fourier Series coefficients; 

 

B = π/2A; 

 

b = half of lagging span; 

 

C0 to C5, 0C  and 1C  = integration constants; 

 

D and Dn = an arbitrary constant for Φ; 

 

d0, 0d and d1 = non dimensional constants used with an assumed  
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                displacement function; 

 

E = Young's modulus for lagging; 

 

Es = Young's modulus for soil; 

 

Fi = dimensionless coefficients; 

 

I = moment of inertia of lagging cross section; 

 

i = integer counter; 

 

j = integer counter; 

 

K = dimensionless coefficient; 

 

k = integer counter; 

 

k0 = μ/(1-μ)  the at rest coefficient of earth pressure; 

 

ln = natural logarithm; 

 

M = dimensionless coefficient; 
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Mmax = max moment at z=0; 

 

n = integer counter; 

 

p = average stress on lagging; 

 

Rm = modification factor for moment; 

 

Rv = modification factor for shear; 

 

S = dimensionless coefficient; 

 

Sx = section modulus of lagging; 

 

s = width of lagging board in the x-direction. 

 

t = half-width of rigid base, or half of pile flange; 

 

u = dummy variable used in integration; 

 

V(η) = shear strength function; 
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Vmax = max shear at z=b; 

 

v = displacement function in the y-direction; 

 

v0 = v at y=0; 

 

0v = a function which approximats v0; 

 

0
~v  = an improved function for approximating v0; 

 

w0(η) = a function of _ used for simplification; 

 

x, y and z = axes of reference; 

 

α = dummy variable used in integration; 

 

αi = coefficients of the power series representation of the 

     displacement; 

 

αn = nπ/(b+t) ; 

 

ß = (1-μ2)/Es for plane strain and 1/Es for plane stress. 
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Γ = t/b; 

 

γ  = unit weight of soil; 

 

δ = 5pb4s/24EI; 

 

η = z/b; 

 

λ = dummy variable used in integration; 

 

μ = Poisson's ratio; 

 

ρ = μ(1+μ)/Es for plane strain or μ/Es for plane stress; and 

 

σ = normal stress; 

 

τ = shear stress; 

 

Φ = stress function; 

 

φ = a symbol indicating that the term an at n=0 is replaced by a0/2; 

 

 


