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Abstract: 

In this paper a problem is introduced between current mathematical solutions in elasticity 

and physical evidence. This problem is apparent when the contact shear underneath the 

imposed load is disregarded; assuming the imposed load on the surface is not a point 

load. A different answer from various solutions in the semi-infinite solid of mass is 

revealed when starting with a line load solution and extending it to an infinite uniform 

load. This problem is explained to effect solutions to the boundary value problem for 

linear and non linear material. The contact shear is shown, at least in the case discussed in 

this paper, that it cannot be ignored. 

 

Introduction: 

Because historically every physicist and engineer ignored the static contact shear and its 

effect the author declines to elaborate in an introduction. The presented article is a major 

eye opener to why materials deteriorate on contact.  

 

Mathematical Differences: 

Case 1- When starting with a line load acting within an infinite solid (Integrated Kelvin 

[1] problem I), Fig1.a. the stresses in the solid are: 
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Where ν  is Poisson’s ratio and 2p is the point load. 

 

These stresses are for a plain strain consideration. Now consider Fig.1.b; by integrating 

Eq 1, 2, 3 and 4 over a for –b ≤ a ≤ b , 2p = 2p da and substituting x by (x – a) yields: 
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Now let ∞→b for a stationary point x, yields, 
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Where the plus sign is compression for z > 0, the minus sign is tension for z < 0 and at 

qz z 2    0 == σ . 
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Fig 2.a shows the infinite uniform load inside the solid. By taking a free-body diagram at 

the x-axis the stresses on a semi-infinite mass of solid is obtained; as per Fig.2.b. Thus; 
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Case 2 – When starting with a line load acting on the surface of a semi-infinite mass 

(Integrated Boussinesque [2] problem) Fig.3.a the stresses in the solid are: 
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These stresses are for plain strain consideration. Consider Fig.3.b; by integrating Eq. 11, 

12, 13 and 14 over a for p = q da and substituting x by (x-a) in the interval –b ≤ a ≤ b 

yields: 
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Now let ∞→b for a stationary point x, yields, 
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Case 3- When starting with a vertical line load beneath the surface of a semi-infinite mass 

of solid (Melan’s [3] problem I) Fig.4; the stresses in the solid are not shown for 

simplicity. However when integrating in the same manner as in case 1 and 2 of the above 

section, the stresses become: 
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Physical Interpretation: 

Definitely case 1 and 2 of the last section gives two different answer to the same 

problem. The question is Eq. 10 or Eq. 19 is the correct answer? From physical stand 

point the deflection in the x direction is zero everywhere. Therefore, the strain is zero 

everywhere 0=xε or 
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Thus Eq. 10 is correct. In case 3 Eq. 20 is not correct since. This can also be understood 

that the deflection in the z direction is the same everywhere and the deflection in the x 

direction is zero. Thus, the strain energy above and below the imposed load is zero 

everywhere in the solid. Furthermore, xσ  below the imposed load should equal to K0 q 

per Eq. 22 and equal to zero above the load by taking zσ  from Eq. 20. This difference is 

the subject of this paper and these equations will become complete when considering the 

contact shear on the surface underneath the load. 

 

Contact Shear 

Boussinesque solution for a point load is complete. The problems arise when integrating 

these equations due to a stress on the surface. Consider Fig. 5 
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Note Bousinesque equation gives 0  and  0at  == zxxε a constant compressive strain 

value of )( ρβ −q which causes extra lateral load and gives a negative deflection of 

bxbxq ≤≤−−− at   )( ρβ and zero otherwise and at 5.0=ν  the deflection and the strain 

is zero everywhere. This physically does not make sense because as x = b is large or 

approach infinity an infinite lateral deflection occur under the load at b. Also it does not 

make sense especially when considering the load transmitted by a material. Even if the 

surface is frictionless as in magnetic levitation or uniform hydrostatic pressure the 

deflection in the x direction due to uniform load is expected to be zero under the load also 

the deflection is expected to be zero for a hard material pressing on a softer material or 

vise versa other wise both materials deflect laterally to infinity at large b. The reason is 

no mater how the deflection function is defined at the surface underneath the load, if b is 

large or goes to infinity a large lateral deflection occur that does not make physical sense. 

Surely the point at the center of the load in Fig.5 and its neighborhood is not going to go 

any place. This means physically the deflection at z = 0 and x in the interval δδ ≤≤− x , 
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where δ is small but not zero, is close to zero. Thus 0→xε at least at z = 0 and x = 0 at b 

approach infinity. It is important to mention that it does not matter how the load is 

transferred. For example if the load is transferred though a rigid or a soft type material, 

still 0→xε at z = 0 and x = 0 for both materials at b approach infinity. Once the load is 

transferred by a material the deflection will start zero underneath the load and move 

positively in the direction of x beyond the load as the material continue to press the load. 

The above criterion is possible. Take for example a material such as rubber with 

5.0=ν and K0 = 1.0; immediately case 1, 2 and 3 above gives 0=xε at the surface 

everywhere; in this case b did not enter the equation. Why should it be any different for 

any other material? Therefore, to complete Bousinessque equations, one must consider a 

contact shear function that cause 0→xε at least at z = 0 and x = 0 for b approaching 

infinity. Furthermore, this shearing pressure must disappear when ∞→b and give an 

additional stress to Bousinesque equation of magnitude equal to xqK σ    to)1( 0 − .  

 

If a material touches the surface then deflection compatibles between the semi-infinite 

solid and the material pressing to transfer the load is required. And therefore the contact 

shear can be bounded by a load transferred by a rigid surface with no slippage and the 

contact shear on other materials with no slippage, this contact shear will be derived in this 

paper. Also the maximum contact shear will be derived in this paper and should be used 

as companion when integrating any load for b approaching infinity in order to have the 

correct stresses in the solid.  
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An immediate consequence to this phenomena is that the contact shear not only must 

exist for a compressive stress on the surface, but also for a tension type stress, the surface 

between the load and the semi-infinite mass must be glued and one must consider 

0,0at    0 === zxxε  at b approach infinity. 

 

Analysis: 

1-Existence: The task now is to find a shear function t(x) that satisfies the criterion in the 

previous section. The foregoing analysis is to show that these criterion can be satisfied 

very easily on the simplest form and can be expanded to any loading function. The 

analysis will begin with a simple form function kxAxt sin)( =  for the uniform load q as 

shown in Fig.6 where A and k are constants. 
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From Boussinesque equations for a shear point load on the surface the stresses can be 

found for t(x) as: 
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[ ]∫
∞

∞−
−=

+

−
= axudu

zu

xuku
A

z
z h             wit

)(sin2
222

2

π
σ  

Or 

 

[ ] [ ]∫∫
∞

∞−

∞

∞− +
+

+
−= du

zu

ku
kxA

z
du

zu

kuu
kxA

z
z 222

2

222

2 cos
sin

2sin 
cos

2

ππ
σ  

Or 

 

zk
z ekxkzA −−=  cosσ  ……………………………………………………………….. (26) 



 14 

 

Similarly: 
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And 
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Substitute a = ub yields 
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Satisfies the above criterion and it can be concluded that such a shear function not only 

exists but also a family of them do exist. 

 

2-General Solution: In order to have a true grip of the general solution, the analysis will 

be based on minimizing the strain energy which can be expressed as: 
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Where V0 is the strain energy per unit volume, V is the energy per unit length. If 

considering strictly an even function or an odd function pressure on the semi-infinite 

solid q(x) the strain energy becomes: 
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So by superposition any load can be achieved using an even and an odd function. 

This analysis will start first with showing that Eq. 22 is indeed the solution for an infinite 

uniform load on the surface. Consider the solution for an infinite uniform load as: 
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Where K is a constant to be found, if substituting in Eq. 34 yields, 
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Minimizing V with respect to K yields: 
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Secondly extracting the general solution and showing Kelvin solution is indeed correct. 
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With the Φ  function: 
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The Bi-harmonic equation and the boundary condition is satisfied: 
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The stresses are: 

 

( )∫
∞ −+−=

∂

Φ∂
=

02

2

 cos ααασ α dxezDC
x

z
z  ………………………………………….. (39) 

 

( )[ ]∫
∞ −+−=

∂

Φ∂
=

02

2

 cos2 ααασ α dxezDDC
z

z
x  ………………………………….. (40) 

 

( )[ ]∫
∞ −+−−=

∂∂
Φ∂

−=
0

2

 sin ααατ α dxezDDC
xz

z
xz ………………………………….. (41) 

 

Where C and D are constants and can be a function of α to be determined. At z = 0 Eq. 39 
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By taking the Fourier transform of q(x), assuming q(x) is an even function and satisfies 

the Fourier Integral criterion, yield: 

 

∫∫
∞∞

=
00

 cos)(  cos 
2

)( λαλλαα
π

dqdxxq ……………………………………………. (43) 

 

Equating Eq. 42 to 43, yields: 
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0
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2
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Now substituting Eq. 39 through Eq. 41 in Eq. 34 and investigating the first term of the 

energy function yields: 
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Noting the first term of the integration represent a Fourier series as  
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This is ok as long as 
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 for the proper choice of C. It can be easily be shown for q(x) = q constant 

this can be satisfied. From this relation yields: 
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Repeating this process to the rest of the terms of the energy equation, Eq. 34, yields: 
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Now let D - C = D0 and substitute then 
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For which it can be re-written as: 
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V can be minimized two ways: 1- with the proper choice of D0 2- with the proper choice 

of t(x). 

 

First case minimize with respect to D0: 

 

CDDCC
D

V
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So that 
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C
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The first consequence to this choice of D is the strain xε at the surface is zero 

everywhere. Since 
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At z = 0 the equation becomes: 
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 Which corresponds to Eq. 48. The second consequence to this choice of D0 is if one 

chooses qq =)(λ constant then from Eq. 44 yields: 

 

q
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sin2
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When substituting Eq. 49 and Eq. 50 in Eq. 39, 40 and Eq. 41 and integrating the Laplace 

transform the result gives the same equation as Eq. 5, 6 and Eq.8. Also, it can be shown 

that the solution for a point load of Eq. 1, 2 and Eq. 4 can be obtained by letting b go to 

zero with qb remain constant. Furthermore the derivation shown above was not derived 

by the use of Boussineque equations in which Kelvin solution was originally derived 

from. The derivation was derived from minimizing the strain energy and shows that xε at 

the surface is absolutely equal zero.  

 

Second case minimize with respect to t(x): 

 

With ∫−=
b

dqC
0

 cos )( 
2

)( λαλλ
π

α , choosing 

∫ −==
b

CDdtD
0

0  sin )( 
2

)( λαλλ
π

α  ……………………………………………….. (51) 

So that at z = 0 in Eq. 41, ∫
∞

=
0

0  sin αατ dxDxz  
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Substituting C and this choice of D0 in Eq. 47, yields: 
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Thus 
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∫∫ −
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Which can be written as: 
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This integral equation is solved by Wiener-Hopf procedure [4] with second term is 

eliminated for an even function q(x) and the result is 
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Where t0(x) must satisfy the homogeneous solution condition in Eq. 51A 
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t(x) in Eq. 52 shall be defined as the contact shear. t0(x) is a function that need to satisfy 

compatibility between both materials, the semi-infinite solid and the material transmitting 

the load. t(x) may not minimize the strain energy in the material transmitting the load. 

However, t0(x) may help do that. 

 

Note at x = b in Eq. 52 the contact shear is infinite which will give ∞→xσ  at x = b+. 

This is common when introducing any shear load at the surface to have infinite lateral 

stress at the corners of the load at the surface. In this case plasticity occurs.  However, the 

contact shear it self being infinite may not possible physically, because may have cracks 

at the corner of the load every time the load is applied with hard material. If restrict the 

shear at some distance b0 then Eq. 52 can be applied at 00 bxb ≤≤  where bb →0  or b0 

approach b. Then Eq. 51 becomes: 
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Thus the strain energy is minimized to the best it can from a physical sense. 

 

Consequence that effects Melan’s Solution: 

 

The first consequence is that the method of subtraction Melan outlined must be updated 

and his solution must be corrected when b approach infinity. This is becomes necessary 

because when using Bousineesque equations for a point load (not a shear point load) to 

subtract the stress from the surface he did not take into account of the contact shear where 

it makes zero strain at the center of the load and the deflection in the x direction at the 

surface zero b approach infinity. Thus, the deflection derivation is as follows: 
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From Eq. 41 and at x = 0 u = 0,  f(z) = 0 thus  
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At z = 0 yields: 
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Now substitute D = C + D0 in Eq. 55 yields 
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Then substitute Eq. 44 and Eq. 56 with changing to the full integrand yields: 
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Using the Fourier Transform on the left side and integrating the right side yields: 

 

( ) ∫∫
−

−
= −

+
−













>

≤−−=
0

0

ln)(
for     zero 

for     )(

2

1

22

22

0

b

b

x

x
z x

x
t

bx

bxdq
u

λ
λ

λ
π
βλλβρ   ………………… (58) 

 

Let u = 0 in the region bbbxb =≤≤− 0  with Eq. 51B can be obtained 

 

And the minimum energy criterion is satisfied and the choice in Eq. 52 make the lateral 

deflection underneath the load close to zero. If substitute for a constant load q in Eq. 58 

yields: 
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Where the sign change to account for compression and the contact shear is found from 

Eq. 52 yield: 
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For the strain from Eq. 57 and Eq. 58 yields at z = x = 0: 
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Thus the strain at z = x = 0 is close to zero and not )( ρβ −q  

 

Note that if the load has slippage at the outside as in a pocking surface and the deflection 

at δδ ≤≤− x , where δ is small, is close to zero, the strain 0=xε for a smaller δ=b . It 

is expected two small cracks or plasticity at x = b and x = –b of the load due to infinite 

lateral stress as seen when walking on soft moist soil. 

 

By inspection the vertical deflection under the load is not constant since Eq. 53 is a 

function. qKq xz 0  and  == σσ are constant at bxb ≤≤− and a rigid body deformation 

occur that is able to flex under the load for the selected contact shear. 
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Solution for Uniform load 

Adding the contact shear using Boussinesque equation for shear yields: 
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Substitute Eq. 59A and let θθθ dbdaba
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Integrating Eq. 63 through 65 using complex number in the denominators yields: 
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Equations 66, 67, 68 and 69 must be added to Eq. 15, 16, 17 and 18 respectively. 

 

Where ϕψθ  and   ,  are the angles in Fig 7. Fig. 8 and table 1 shows the lateral stress xσ  

for 35.0=ν  and q = 1.0. Note xσ under the load at z = 0 is not q as in Bousinesseque 

equation. The difference can be as much as 50% depending on poison’s ratio. This 

problem can also happen in finite element when ignoring the contact shear. It maybe wise 

to use the maximum shear derived in Eq. 52 and compare with no contact shear. 
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Table 1 

N M = 0 M = 0.5 M = 1 M = 1.5 M = 4 M = 10 

0.0 0.53846 0.53846 ----------- 0.15768 0.01514 0.00233 

0.1 0.48064 0.47566 0.62432 0.24495 0.02355 0.00361 

0.2 0.42440 0.41522 0.46408 0.29802 0.03176 0.00489 

0.3 0.37116 0.35966 0.38766 0.32028 0.03971 0.00616 

0.4 0.32199 0.31075 0.33756 0.32181 0.04733 0.00743 

0.5 0.27762 0.26889 0.29976 0.31183 0.05456 0.00869 

0.6 0.23832 0.23348 0.26902 0.29635 0.06137 0.00993 

0.7 0.20407 0.20357 0.24294 0.27872 0.06771 0.01117 

0.8 0.17459 0.17820 0.22022 0.26066 0.07355 0.01239 

0.9 0.14943 0.15655 0.20012 0.24301 0.07888 0.01360 

1.0 0.12810 0.13797 0.18218 0.22618 0.08367 0.01479 

1.1 0.11008 0.12195 0.16605 0.21032 0.08794 0.01596 

1.2 0.09487 0.10807 0.15151 0.19549 0.09167 0.01712 

1.3 0.08205 0.09601 0.13837 0.18167 0.09489 0.01825 

1.4 0.07123 0.08552 0.12648 0.16883 0.09760 0.01936 

1.5 0.06207 0.07635 0.11572 0.15693 0.09983 0.02046 

1.6 0.05431 0.06833 0.10597 0.14590 0.10160 0.02152 

1.7 0.04770 0.06129 0.09713 0.13569 0.10293 0.02257 

1.8 0.04206 0.05511 0.08912 0.12625 0.10386 0.02359 

q /square length 

Semi-Infinite 

Solid 

x 

z 

b b 

Fig. 7 

(x, z) 

ϕ  θψ  
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Lateral Stress at v=0.35
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Fig 8 

 

 

Contact Shear for a slab with a load: 

 

If a slab deflecting PL/AE then the deflection must match between the slab and the semi-

infinite solid. Rewriting Eq. 58 yields: 

 

( )
0

0

0

)(
ln)()(

2

1

AE

dtx

x

x
tdqu

x

b

b

x

xz

∫
∫∫ =

−
+

−−=
−−=

λλ

λ
λ

λ
π
β

λλρβ ……………… (70) 

 

Where E0 is the elastic modulus of the slab and A is the cross section area. Using series 

solution Eq. 70 can be solved let: 
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And from Eq. 72 
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Substitute Eq. 71, 72 and 73 in Eq. 70 yields: 
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Eq. 74 creates a matrix inversion solution for finding the coefficients an as a function on 

cn when equating term by term and it is solvable. It is expected when b goes to infinity 

the contact shear goes to zero and the strain under the surface goes to zero. 

 

 

Applications 1: 

 

Vehicle tires rotate on the road because of contact shear and normal times coefficient of 

friction. For example if the road is also made out of rubber and poison’s ratio is 0.5 it 

would not get no contact shear just normal times coefficient of friction. If assume the 

strain is zero under the tire then an approximate locale plain strain problem occur. For the 

purpose of estimating the magnitude of the contact shear assume a uniform strip load as 

follows. 

 

Thus 
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Where P is the axial load per ft and b0 is one half the actual contact distance of the load. 

If assume maximum shear allowed at b0 yields 
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The total shear becomes 
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Substituting Eq. 76 in Eq. 77 yields, 
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Note as b0 increase S increase and there is more traction as the contact area increase a 

more grip to the road in static condition. 

 

Applications 2: 

The Hertz contact stress between two rolling cylinder to cylinder surface is expected to 

have additional shear stress due to contact shear and xσ at the surface is less than zσ and 

not equal. The Hertz net pressure in the x direction 
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The maximum contact shear stress from Eq. 52 is 
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Conclusion: 

 

The contact shear has been derived for a strip load and integrating Boussinesque equation 

to a uniform load is addressed. Because the contact shear introduce infinite stress if rigid 

body deterioration of materials can occur as seen in gears subject to constant static 

contact. If shear traction is to be measured in the laboratory the simple formula is 

suggested 
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Where A and A’ is a coefficient to be measured in the laboratory, q is the average stress 

on the contact surface. P is the total point line load and b0 is the half distance of the 

contact surface. It can be concluded that the coefficient of friction will drop once the 

body moves into dynamics due to loss of contact shear from the grip of the two materials. 
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