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Abstract:
In this paper a problem is introduced between current mathematical solutions in elasticity
and physical evidence. This problem is apparent when the contact shear underneath the
imposed load is disregarded; assuming the imposed load on the surface is not a point
load. A different answer from various solutions in the semi-infinite solid of mass is
revealed when starting with a line load solution and extending it to an infinite uniform
load. This problem is explained to effect solutions to the boundary value problem for
linear and non linear material. The contact shear is shown, at least in the case discussed in

this paper, that it cannot be ignored.

Introduction:
Because historically every physicist and engineer ignored the static contact shear and its
effect the author declines to elaborate in an introduction. The presented article is a major

eye opener to why materials deteriorate on contact.

Mathematical Differences:
Case 1- When starting with a line load acting within an infinite solid (Integrated Kelvin

[1] problem I), Figl.a. the stresses in the solid are:
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Where v is Poisson’s ratio and 2p is the point load.

These stresses are for a plain strain consideration. Now consider Fig.1.b; by integrating

Eq 1, 2,3 and 4 over a for—b <a < b, 2p = 2p da and substituting x by (x — @) yields:



2p /unit length
2q /squarg length——\‘ .
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.................................................. (5)
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Now let b — oo for a stationary point x, yields,

Where the plus sign is compression for z > 0, the minus sign is tension for z < 0 and at

z=0 o,=2q.
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Fig 2.a shows the infinite uniform load inside the solid. By taking a free-body diagram at

the x-axis the stresses on a semi-infinite mass of solid is obtained; as per Fig.2.b. Thus;

c.=¢, oc,=0,=K,q and 7,=0 where KO:I— ................. (10)

Case 2 — When starting with a line load acting on the surface of a semi-infinite mass

(Integrated Boussinesque [2] problem) Fig.3.a the stresses in the solid are:
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These stresses are for plain strain consideration. Consider Fig.3.b; by integrating Eq. 11,
12, 13 and 14 over a for p = g da and substituting x by (x-a) in the interval -b <a <b

yields:



2g |1 4 x-b S x+b 1 z(x-b) 1 z(x+b)
o, =—1—|—tan +tan” | — | |—-— 5t —
|2 z z 2(x-b)"+z" 2(x+b) +z

2q |1 4 x-b S x+b 1 z(x-b) 1 z(x+b)
o, =—1—|—tan +tan” | — | |+— = —
T |2 z z 2(x-b)"+z" 2(x+b) +z

2q| 1 2 1 2

rL= (18)
7 |2(x-b)y"+z" 2(x+b) +z

Now let b — oo for a stationary point x, yields,

c.=¢, c.=q, o,=2vg and 7, =0 ... (19)

Case 3- When starting with a vertical line load beneath the surface of a semi-infinite mass
of solid (Melan’s [3] problem I) Fig.4; the stresses in the solid are not shown for
simplicity. However when integrating in the same manner as in case 1 and 2 of the above

section, the stresses become:

0 z<d (1-Ky))g =z<d v(1-K,)g z<d
o, = , O, = , O, = and 7 =0
g z=>d q z>d Y 2ug z>d Y
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Physical Interpretation:
Definitely case 1 and 2 of the last section gives two different answer to the same
problem. The question is Eq. 10 or Eq. 19 is the correct answer? From physical stand

point the deflection in the x direction is zero everywhere. Therefore, the strain is zero

everywhere & = 0or

1-v
E E

g =po,—po, =0  where pf=

Where E is the elastic modulus, this loads to:



Thus Eq. 10 is correct. In case 3 Eq. 20 is not correct since. This can also be understood
that the deflection in the z direction is the same everywhere and the deflection in the x
direction is zero. Thus, the strain energy above and below the imposed load is zero

everywhere in the solid. Furthermore, o, below the imposed load should equal to Ky ¢

per Eq. 22 and equal to zero above the load by taking o, from Eq. 20. This difference is

the subject of this paper and these equations will become complete when considering the

contact shear on the surface underneath the load.

Contact Shear
Boussinesque solution for a point load is complete. The problems arise when integrating

these equations due to a stress on the surface. Consider Fig. 5
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Note Bousinesque equation gives & _atx =0 and z = 0a constant compressive strain
value of ¢g(f — p)which causes extra lateral load and gives a negative deflection of
-q(fp - p)|x| at —b < x < band zero otherwise and at v = 0.5 the deflection and the strain

is zero everywhere. This physically does not make sense because as x = b is large or
approach infinity an infinite lateral deflection occur under the load at 5. Also it does not
make sense especially when considering the load transmitted by a material. Even if the
surface is frictionless as in magnetic levitation or uniform hydrostatic pressure the
deflection in the x direction due to uniform load is expected to be zero under the load also
the deflection is expected to be zero for a hard material pressing on a softer material or
vise versa other wise both materials deflect laterally to infinity at large b. The reason is
no mater how the deflection function is defined at the surface underneath the load, if b is
large or goes to infinity a large lateral deflection occur that does not make physical sense.
Surely the point at the center of the load in Fig.5 and its neighborhood is not going to go

any place. This means physically the deflection at z =0 and x in the interval -6 <x <7,
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where 9 is small but not zero, is close to zero. Thus ¢ — Oatleastatz=0and x=0 at b
approach infinity. It is important to mention that it does not matter how the load is
transferred. For example if the load is transferred though a rigid or a soft type material,
still ¢ — 0atz=0 and x = 0 for both materials at b approach infinity. Once the load is
transferred by a material the deflection will start zero underneath the load and move
positively in the direction of x beyond the load as the material continue to press the load.
The above criterion is possible. Take for example a material such as rubber with

v =0.5and Ky = 1.0; immediately case 1, 2 and 3 above gives & _= 0 at the surface
everywhere; in this case b did not enter the equation. Why should it be any different for
any other material? Therefore, to complete Bousinessque equations, one must consider a

contact shear function that cause &, — 0 at least at z =0 and x = 0 for b approaching

infinity. Furthermore, this shearing pressure must disappear when b — oo and give an

additional stress to Bousinesque equation of magnitude equal to (K, —1)g to o .

If a material touches the surface then deflection compatibles between the semi-infinite
solid and the material pressing to transfer the load is required. And therefore the contact
shear can be bounded by a load transferred by a rigid surface with no slippage and the
contact shear on other materials with no slippage, this contact shear will be derived in this
paper. Also the maximum contact shear will be derived in this paper and should be used
as companion when integrating any load for b approaching infinity in order to have the

correct stresses in the solid.
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An immediate consequence to this phenomena is that the contact shear not only must
exist for a compressive stress on the surface, but also for a tension type stress, the surface
between the load and the semi-infinite mass must be glued and one must consider

e =0 at x=0,z=0 atb approach infinity.

Analysis:

1-Existence: The task now is to find a shear function #(x) that satisfies the criterion in the
previous section. The foregoing analysis is to show that these criterion can be satisfied
very easily on the simplest form and can be expanded to any loading function. The
analysis will begin with a simple form function #(x) = Asin kx for the uniform load ¢ as

shown in Fig.6 where A4 and k are constants.

q /square length |

S = "

N #(x) =/ Asinkx

Semi-Infinite el
Solid

Fig. 6
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From Boussinesque equations for a shear point load on the surface the stresses can be

found for #(x) as:

(x—a)sinka

a= Aj[(

x— a)+z]

J- (x—a)sinka a)smka
b(x—a)’ +z°

2 .
AJ. (x—-a) Smk"z A oo 25)
[(x a)’ +z ]
At b — woyields:
2 : _
0'2222 AI usin k(u 2x)du with wu=x-a
T [u2+22]
Or
2 .
o, = 2 ——Aco ka. usmku2 du+22 Asmka. COSkuzdu
T [u +z ] T [u +z ]
Or
O, = —kzACOS KX €™ L oo, (26)
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Similarly:

u sin ku cos ku

o, = —%Aco locJ-oc R du +— p Asmlcx.[mmdu -0,

O, =—2AC0SKX € ™ — O, i 27
And

.o =A(—kz)sinkxe ™ e, (28)
Note:

If k>0 then 0,=0, 6, =-24 and r_=0

If z=0 then o,=0, o, =-24coskx and 7 = Asinkx

Now if one chooses k=g and A:ﬂ l—ﬁ # where SI(a) = J- smu
b 4 B ) Sl(a)

then the contact shear becomes:

9 P il &
t(x,a) = 4 Si@) (1 ﬂjsm( p j ........................................................ (29)
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And

2

(x— a)sm(aaj
o, 22—(1— j I b
2\ B)SI@) [(x-a)? + 2]

da

Substitute a = ub yields

e

Note: if b >0, 0, =0 andif x=0andz=0 o, =0 for o yields

o, =
2

da—-o,

. oa
1(1—”} s ()

B)SI(@)* (x—a)? +2°

Substitute a = ub yields

o =—|l-S|——| ————=du—0, .o
2

(x—ujsinau
_l[l_EJ q 1 b dl/l O_Z
MG G)
Toul 2
b b

B
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Andas b > oo = —q(l —BJM = —q(l _EJ
p)Sl(a) B

Andx=0andz=0inEq. 31 o, =—q(1—%j

Now when including the uniform load g the strain becomes:

e,
O = {qverTicaL Loap — 9 ( _Zj
SHEAR LOAD
b —>
:%quOq for or in Eq.31
x=z=0

and

&, = (ﬂax —pPO. )VERTICAL roap T (ﬂax — PO, )SHEAR LOAD
b—

=(ﬂ—p)q—ﬂ(l—£j:0 for or inEq.31
P L
x=z=0

And the criterion discussed in the previous section is satisfied. Since a can take any value

the function
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5[kl

. Sl(a,)

t(x,a,) =

Satisfies the above criterion and it can be concluded that such a shear function not only

exists but also a family of them do exist.

2-General Solution: In order to have a true grip of the general solution, the analysis will

be based on minimizing the strain energy which can be expressed as:
_r Lo 2 2 2p ,
V= LC J:) V,dzdx = ELO IO [ Yo (GX +0; )— 2pc 0, + TTXZ dzdx ................... (33)

Where V) is the strain energy per unit volume, V is the energy per unit length. If
considering strictly an even function or an odd function pressure on the semi-infinite

solid ¢g(x) the strain energy becomes:

R A o p—— (4

So by superposition any load can be achieved using an even and an odd function.

This analysis will start first with showing that Eq. 22 is indeed the solution for an infinite
uniform load on the surface. Consider the solution for an infinite uniform load as:
c.=¢q, o,=Kq and 7_=0

X

Where K is a constant to be found, if substituting in Eq. 34 yields,
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Minimizing V with respect to K yields:

V0 S2pK-2p=0K=L
oK B

A
[
is

Secondly extracting the general solution and showing Kelvin solution is indeed correct.

Consider g(x) an even function as in Fig. 7.

b
g(x) /square length ‘%

=

A -

1(x)

Semi-Infinite 7
Solid

l\l‘

Fig. 6
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With the @ function:
D= J-oc LZ(C + Dozz)e"“Z COSON AO .., (37)
"«

The Bi-harmonic equation and the boundary condition is satisfied:

o'd o'd o'd
P +28x2822 + o S0 (38)

The stresses are:

IO e
o, = v :—I (C+D0z)e™ COSOXAA .l (39)
O e
o, = Py =IO [(C-2D)+ Dozl ™ cosaxda ..., (40)
0’®

T, —azax:—jo [(C—D)+Dozle™ sinaxda ..., (41)

Where C and D are constants and can be a function of a to be determined. Atz =0 Eq. 39

becomes:
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By taking the Fourier transform of g(x), assuming g(x) is an even function and satisfies

the Fourier Integral criterion, yield:
2 00 00
q(x) = —J- cos ax daJ- GA)COSAAAA oo (43)
g Y0 0
Equating Eq. 42 to 43, yields:
2 b
Cla)=-= j GEA) COSOA AA v oo, (44)
/il

Now substituting Eq. 39 through Eq. 41 in Eq. 34 and investigating the first term of the

energy function yields:

J. dxj dz o’ —j de. dz“ (C+Daz)e “ZcosaaxdaT

—j de' dz“ (C+D&)e ¢cos§cd§}[J’:(C+Daz)e“Z cosoocda}

= [ax["da[ a¢ CC©)  C@DE) . CED@) ., D@)DE)
0 0 0 a+é (a+&)° (a+&)* (a+&)

aé} coséx cosox

Noting the first term of the integration represent a Fourier series as

m -z - C(a) {%Jj cos ax dxj (ﬂ(iz coséxdeg} =3 j:_[C(a)] do :zj—w_[C(a)] d

p—>a2 p+a 4
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This is ok as long as

r%

\ : <o for the proper choice of C. It can be easily be shown for g(x) = g constant
o+

this can be satisfied. From this relation yields:

2

2 2
I dxj dzafzzj @D D azﬁj’ Hervep+ 2 lig
0 0 291 2a 2a 4a 49 o 2

Repeating this process to the rest of the terms of the energy equation, Eq. 34, yields:

14 :%j:[ﬂ(zcz ~2CD+3D )+ p(2¢” —2¢D - D*)+ £ (2¢? —2CD+D2)}d—a

1% a
.................................. (45)

Now let D - C = Dy and substitute then

y="1 l{—z(mmﬁjwo +(3,3—,0+£j(C+D0)2}”'0‘

47 1% 1%
For which it can be re-written as:
V=rnl+v) j:i[— CD, +(1-v)(C+D,)’ ]da ............................................. 47)
a
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V' can be minimized two ways: 1- with the proper choice of D, 2- with the proper choice

of #(x).

First case minimize with respect to Dy:

V0= —C+21=1)(C+Dy)=0= D, =2 ¢

oD, 21-v)

So that

D= Ct Dy = 48)
2(1-v)

The first consequence to this choice of D is the strain ¢ _at the surface is zero

everywhere. Since
g, =po, —po. = ,6’.[: [(C -2D)+ Dozz]e"“Z cosax da — p.[:— (C+Doaz)e™ cosax da
At z = 0 the equation becomes:

o 3 _ :,B+p _ C
gx—J-O [C(,B+p) ZﬂD)]cosaxda 0=D 25 C 20—
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Which corresponds to Eq. 48. The second consequence to this choice of Dy is if one

chooses g(A) = g constant then from Eq. 44 yields:

@) =20 (49)
2 1 sinab
D(a) __;{2(1—@} e (50)

When substituting Eq. 49 and Eq. 50 in Eq. 39, 40 and Eq. 41 and integrating the Laplace
transform the result gives the same equation as Eq. 5, 6 and Eq.8. Also, it can be shown
that the solution for a point load of Eq. 1, 2 and Eq. 4 can be obtained by letting b go to
zero with gb remain constant. Furthermore the derivation shown above was not derived
by the use of Boussineque equations in which Kelvin solution was originally derived

from. The derivation was derived from minimizing the strain energy and shows that & at

the surface is absolutely equal zero.

Second case minimize with respect to #(x):

With C(a) = -2 [ 4(2) cosai ., choosing
T
2 b )
Do(a)z—jo HA)SINAAAA =D = C oo, (51)
T

So that at z=01in Eq. 41, 7 _ :Iow D,sinaxda
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Substituting C and this choice of Dy in Eq. 47, yields:

V- HTV 0 {; [ [ 4(2)cosa dﬂ,}[ [ (sinai dﬁ,}

+%U t(A)sinad dA - j q(l)cosaﬂdﬁ}z}d

Now
oV 1+v 2v—1 b
0= jo{ . U q(/l)cosa/ldﬂ}[jo smaﬁ,dﬁ,}

; 2%[ [l tysina dﬂ,}[ [ sinaz dﬁ}}da

Jj {% J‘: cosar dajj q(A) cosal dﬁ}dr}d‘f

2v—1
0= VZ ﬁjj{

+2(1- v)j t(/z)d/lj dE[” %dﬂ
0= 2‘/_17[_[; U q(r)dr}d§+(l—v)j 1(2)daf 1 ’”g de
Or
_ Lb {21(1— _2:) - f g(r) dr - jo”t(a) In Zz f . da}dcf .................................. (51A)
Thus
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—(ﬂ?] j q(r)dr = j () 1n§

Which can be written as:

%(%J [ quwydu=[ o) mla-odr  where = %

This integral equation is solved by Wiener-Hopf procedure [4] with second term is

eliminated for an even function g(x) and the result is

tby) = bé)dé +t,
(by) Wﬂjlg_ g(b&)dé +

Which leads to

GEAYAA+15(X) oeeeeeeee e, (52)

tH(x) =
) 27[,3«/ b2 '[

Where #p(x) must satisfy the homogeneous solution condition in Eq. 51A

j t (a)j ln

dcfd

25



#(x) in Eq. 52 shall be defined as the contact shear. #y(x) is a function that need to satisfy
compatibility between both materials, the semi-infinite solid and the material transmitting
the load. #(x) may not minimize the strain energy in the material transmitting the load.

However, #y(x) may help do that.

Note at x = b in Eq. 52 the contact shear is infinite which will give o, — o atx=»5".

This is common when introducing any shear load at the surface to have infinite lateral
stress at the corners of the load at the surface. In this case plasticity occurs. However, the
contact shear it self being infinite may not possible physically, because may have cracks
at the corner of the load every time the load is applied with hard material. If restrict the

shear at some distance by then Eq. 52 can be applied at b, < x < b, where b, = b or by

approach b. Then Eq. 51 becomes:
2 (b .

D,(a) = —J- t(A)sinadldi=D-C
g v

And Eq. 51B becomes:

%(%J jjq(r)dr_ j t(a)lnzz da = j t(a)lng da - j t(a)lng Zda
or

Ibt(a)ln'§+ada—>0 as b, —b

by E—a
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Thus the strain energy is minimized to the best it can from a physical sense.

Consequence that effects Melan’s Solution:

The first consequence is that the method of subtraction Melan outlined must be updated
and his solution must be corrected when b approach infinity. This is becomes necessary
because when using Bousineesque equations for a point load (not a shear point load) to
subtract the stress from the surface he did not take into account of the contact shear where
it makes zero strain at the center of the load and the deflection in the x direction at the

surface zero b approach infinity. Thus, the deflection derivation is as follows:

g, =po.—-po, and &, =po —po. sothat:

€, = ? = Jm {(B+p)C—2pD+(B+ p)Dazle™ cosaxda
Z 0

g, = 2—” = r {(B+p)C—28D+(B+ p)Dazle™ cos axda
X 0

—0 for @ z—>0 v=0

[ (B+p)C-2pD  (B+p)D(az+1)
0 -« -«

}e‘o‘z cosaxda + g(x)|
U= j“’ {(B+p)C—28D+(B+ p)Dazle™ SN o f(2)
0 a
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ov  ou © I, o T 2(l+v)
a+g——2(ﬁ+p).[o{C—D+Daz}e s1naxda+f(z)—6— z

From Eq. 41 and atx=0 u =0, f(z) =0 thus

g COS QX

v=["{(B+p)C+(B-p)D+(B+p)Dazle

u="{(B+p)C—28D+(f+ p)Dazle S0
[{B+p) (B+p)Daz}

Atz =0 yields:

sin ax

u

o= [ B+ p)c-2pD)

Now substitute D = C + Dy in Eq. 55 yields

sin ax

u

o= | lp-B)c-2pD,}

Then substitute Eq. 44 and Eq. 56 with changing to the full integrand yields:

sin ax

u_ = —% [ {(p P a(A)cosapr di -2 j”b t(A) sin af5h d/l} " da

28

da ....oooooiiiiiiiiiiii...

AO oo

AU o

AO oo

r.=2B+p).



Using the Fourier Transform on the left side and integrating the right side yields:

x+A

zero for x? > b’ x—A4

. _ Yy p [ gda for x* <b’ _gfo (Din
2 7T o

Let u =0 in the region —b < x <b with b, = b Eq. 51B can be obtained

And the minimum energy criterion is satisfied and the choice in Eq. 52 make the lateral
deflection underneath the load close to zero. If substitute for a constant load ¢ in Eq. 58

yields:

u

C(a —al for x*<b?| —glx| for x* <b’
o=l ,0){ zero for x> > b’ (5-p —qﬂx|—\/x2 —bz) for x* > b’
or

(s zero for x> <b’
=0 P qu|—\/x2—b2) for x> >b°

u

Where the sign change to account for compression and the contact shear is found from

Eq. 52 yield:
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t =
) 27z,8x/b2 I 20 b —x?

For the strain from Eq. 57 and Eq. 58 yields at z=x = 0:

- _% L“’ {(p - ﬂ)fb q(A)cosafil di—2p j”b t(A) sin afA d/l}da
28 I ) t(/l) i

= (8- p)q(0)-

~(p-pla- ¥ quWT‘M for ¢(x)=g
_(p- plyg-2B=rh Sml[b_o j

Vs b
=0 as b, > b

Thus the strain at z = x = 0 is close to zero and not ¢(f — p)

Note that if the load has slippage at the outside as in a pocking surface and the deflection

at —o < x <0, where ¢ is small, is close to zero, the strain & = 0for a smaller b=7. It

is expected two small cracks or plasticity at x = b and x = —b of the load due to infinite

lateral stress as seen when walking on soft moist soil.

By inspection the vertical deflection under the load is not constant since Eq. 53 is a

function. o, =¢q and o, = Kq are constant at —b < x < b and a rigid body deformation

occur that is able to flex under the load for the selected contact shear.
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Solution for Uniform load

Adding the contact shear using Boussinesque equation for shear yields:

Jzzzzzjbt(a) ) (60)

T [(x—a)2 +z2]2

_2p (x—a)’
o, = ﬂv[bt(a) o 2] QA e (61)

(x—a)’
[(x a) +z ]2

T, _;ZI t(a)

Substitute Eq. 59A and let M =% , N :% , a=bsind and da =bcosdfin Eq. 60,

61 and 62 yields:

j QM —sing) o (63)
[ —s1n9 +N2]
o, = j [Sme L (64)

M —sin @) +N2]
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V.4 . . 2
rﬂ:/?_quji “ne@l_“ne)zda ........................................ (65)
s 2 [(M—sin9)2 +N2]

Integrating Eq. 63 through 65 using complex number in the denominators yields:

o :,3_,0 Ngq
) 2p 1 s 5
JES] E p
... (66)
X{M@Nz_M2+1)Sin(9—WT+(pj—N(N2—3M2+1)cos(9——v/;r(pﬂ
2 2 !
o :ﬁ—pq I+ (M A )2 cos| 0- L8N (67)
X ﬁ ; 5 :
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T = _lg_pq (M2+N2)% +'B_p (M2+N2)3—2M4+3M2N2+N4+M2

p [(MZ—N2—1)2+4M2N2F 2p (M2+N2)§[(M2—N2—1)2+4M2N2F
1

xsin(&’—WJr(oj—ﬂ_pq N(m? + N2 ) { M MM +N-1) }

2 2p [(MZ—N2—1)2+4M2N2F M?+N? (A7\42—]\72—1)2+4M2N2
xcos[@—Wij

..................................................... (68)

o —o B=pP Ng :
, =0,

2p (M2+N2)%[(M2—N2—1)2+4M2N2F

...... (69)

X{M@NZ -M’ +1)Sin(9—WT+(pj—N(N2 -3M? +1)C05(9_V/;(pﬂ

Equations 66, 67, 68 and 69 must be added to Eq. 15, 16, 17 and 18 respectively.

Where 6, y and ¢ are the angles in Fig 7. Fig. 8 and table 1 shows the lateral stress o,
for v =0.35 and ¢ = 1.0. Note o under the load at z = 0 is not ¢ as in Bousinesseque

equation. The difference can be as much as 50% depending on poison’s ratio. This
problem can also happen in finite element when ignoring the contact shear. It maybe wise

to use the maximum shear derived in Eq. 52 and compare with no contact shear.
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q /square length ‘ﬁ %‘
INETRRRY X
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Semi-Infinite (x, 2)
Solid
VZ
Fig. 7
Table 1
M=0 M=0.5 M =1 M=1.5 M=4

0.0 0.53846 0.53846 - 0.15768 0.01514
0.1 0.48064 0.47566 0.62432 0.24495 0.02355
0.2 0.42440 0.41522 0.46408 0.29802 0.03176
0.3 0.37116 0.35966 0.38766 0.32028 0.03971
0.4 0.32199 0.31075 0.33756 0.32181 0.04733
0.5 0.27762 0.26889 0.29976 0.31183 0.05456
0.6 0.23832 0.23348 0.26902 0.29635 0.06137
0.7 0.20407 0.20357 0.24294 0.27872 0.06771
0.8 0.17459 0.17820 0.22022 0.26066 0.07355
0.9 0.14943 0.15655 0.20012 0.24301 0.07888
1.0 0.12810 0.13797 0.18218 0.22618 0.08367
1.1 0.11008 0.12195 0.16605 0.21032 0.08794
1.2 0.09487 0.10807 0.15151 0.19549 0.09167
1.3 0.08205 0.09601 0.13837 0.18167 0.09489
14 0.07123 0.08552 0.12648 0.16883 0.09760
1.5 0.06207 0.07635 0.11572 0.15693 0.09983
1.6 0.05431 0.06833 0.10597 0.14590 0.10160
1.7 0.04770 0.06129 0.09713 0.13569 0.10293
1.8 0.04206 0.05511 0.08912 0.12625 0.10386
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M=10

0.00233
0.00361
0.00489
0.00616
0.00743
0.00869
0.00993
0.01117
0.01239
0.01360
0.01479
0.01596
0.01712
0.01825
0.01936
0.02046
0.02152
0.02257
0.02359



Lateral Stress at v=0.35
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Contact Shear for a slab with a load:

If a slab deflecting PL/AE then the deflection must match between the slab and the semi-

infinite solid. Rewriting Eq. 58 yields:

e a] x[ H(A)d2

u -
|x—/1| AE,

Ll B
=58 p)| a()dA - [ w2

Where E) is the elastic modulus of the slab and A is the cross section area. Using series

solution Eq. 70 can be solved let:
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an=Ye, (gj

OF (71)
. o c ¥ 2n+l
A)dA =2b e
L‘q( ) ;2n+l(bj
And
o 2n+1
t(A) = Zan(ij
n=0 b
OF (72)
x+ﬂ, o o 2n+1
t(A)In
j (4)ln Z(;mz 2n+1)(2m 2n+1)kbj
And from Eq. 72
s 2n+3
‘W dA =Y a,| T (73)
x_[o t(A)dA = nzoa” P R R
Substitute Eq. 71, 72 and 73 in Eq. 70 yields:
¥ 2n+3
. c ¥ 2n+1 ,8 o o a 2n+l bZan (bj
(B-pP27 (—j -=2 . —j = (74)
= 2n+1{b Tim 2n+1)(2m-2n+1)\ b AE,
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Eq. 74 creates a matrix inversion solution for finding the coefficients a, as a function on
¢, when equating term by term and it is solvable. It is expected when b goes to infinity

the contact shear goes to zero and the strain under the surface goes to zero.

Applications 1:

Vehicle tires rotate on the road because of contact shear and normal times coefficient of
friction. For example if the road is also made out of rubber and poison’s ratio is 0.5 it
would not get no contact shear just normal times coefficient of friction. If assume the
strain is zero under the tire then an approximate locale plain strain problem occur. For the
purpose of estimating the magnitude of the contact shear assume a uniform strip load as

follows.

Thus

P X

X
—=(1-K,))———— .,
\Vb? —x* ( 0)4[70 b —x*

(ﬂ_p)qx — (I—KO)%

t —_ N7 T
) 28\b* —x*

Where P is the axial load per ft and by is one half the actual contact distance of the load.

If assume maximum shear allowed at by yields
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P b
Tl’l’laX :(I_KO)_%
4by \[b? —b;

OF (76)
b_\/[P(lKO)} s
4T1T121X

The total shear becomes

S=j:°t(x)dx:(1—1<o)i[b—1/b2 —bg] .......................................... (77

4b,

Substituting Eq. 76 in Eq. 77 yields,

PA-K)Y P1-K
seu-kof (B -

max max

Note as by increase S increase and there is more traction as the contact area increase a

more grip to the road in static condition.

Applications 2:

The Hertz contact stress between two rolling cylinder to cylinder surface is expected to

have additional shear stress due to contact shear and o _ at the surface is less than o_and

not equal. The Hertz net pressure in the x direction
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X
q(x)=¢q l—b—2

The maximum contact shear stress from Eq. 52 is

b b —

Zﬂﬂb\/bz I b A-x

g(1)dA =

tH(x) =
) 272',3\/ b2 J-

()= — PPl {2bx—(b2 —xz)lnb_x}
b+x

27BN b — x°

Conclusion:

The contact shear has been derived for a strip load and integrating Boussinesque equation
to a uniform load is addressed. Because the contact shear introduce infinite stress if rigid
body deterioration of materials can occur as seen in gears subject to constant static
contact. If shear traction is to be measured in the laboratory the simple formula is

suggested
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S=A(1-K,)g = A'(l_K°)(£j

Where 4 and 4 is a coefficient to be measured in the laboratory, g is the average stress
on the contact surface. P is the total point line load and by is the half distance of the
contact surface. It can be concluded that the coefficient of friction will drop once the

body moves into dynamics due to loss of contact shear from the grip of the two materials.
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