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In this paper we use the finding in the paper by the author on “Exact and Numerical Solutions for
Large Deflection of Elastic Non-Prismatic Beams” [1] www.facsystems.com/Elastica to obtain
new buckling criterion for elastic buckling and ultimate buckling, and the problem will be solved
in general in both cases. What we mean elastic buckling is the standard criterion that has been
established previously as in Timoshenko and Gere [2] and what is normally derived is the
effective length factor. The ultimate buckling criterion is when the elastic buckling load has been
exceeded temporally or permanently for some reason or another. For example ultimate buckling
can happen due to human error as in crane loads or unpredicted work of nature. In many case
depending on the designer the yield is reached then things go back to normal after unloading. But
for simple cantilever column depending on the buckling criterion that is picked the load will
exceed the yield beyond the safety factors established by the code and it is left to the designer to
make these decision after being aware of the forgoing general formulas.

Case I — Prismatic Beam

a) Cantilever Beam

Starting with Eq. 5 in author paper [1] for Fig 1

My~ De=P_
T g(y)= 7l K (D = ) e (D)

Where k* = L
EI

By substituting Eq.1 in Eq.6 and Eq. 7 ref [1] yields,

~0.5k*(y, —y)* +Cl
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J1-[ sk, -+l

At y=0 x=> - or p=0 for stiff end condition of a cantilever beam. Thus, the

denominator goes to zero. Or

Clm =14 0.5k 1 e, 3)
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Substituting Eq. 3 in Eq. 2, yield;

PR SO e
\/1—[0-5k2[(yo —»? = p2ff

Yo

%

Fig 1 —Cantilever Beam




The length of the beam becomes,

Yo dy
S e (5)
! J1-[0.582 [y = 90> = 2]+ 1]
And the deflection can be written as:
L ~0.5k%|(v, —1)* =22 ]-1
xdy = dy
LO j =05k - 02 - 2]+ f
—x, = [ 0.5k%|(y, - ) - y2 J+1 dy
J1=l0.562 [0y - 907 = 2|+ 1]
Yo 0.5k* [(y0 y) ] dy+ Oyo dy : (6
Jl [0.5k2((v, - »)? yo]“] \/1—[0-5k2[(y0—y)2—y§]+1]
Substitute Eq. yields,
—X():jo O.Skz[(yo_y)z_yg] 2dy+L
\/1—[0-5k2[(y0 — 9 =32+
Thus:
» 0.5k’ (yo »)’ —yo]
DY (7
- J1-[o56 [, - 97 = y2 1]
Let:
Yo~V =Y,C08¢
—dy =-y,sin¢
andlot T (8)
p =0.5ky,

Substitute in Eq. 4, Eq. 5 and Eq. 7 yields:

0.5k>y; sin” ¢ —1

X o o e et 9
yoksin g1 - p*sin® ¢




NP (10)
(04
d = —sin| —
an p sm(zJ
) de ( 7;]
kL = e = | Dy | e (11)
¢ Jl-p’sin’g 2
e 2pzsin2¢d¢ Vol 2 d¢ /2 SR
xo_.[o 2 - 2 __jo 2 - 2 _jo VI-p’sin”¢
kyl-p“sin"¢ P J1—p~sin” ¢
.................. (12)

-2/ (n2 ) n)|

Where the function F'is the elliptic integral of the first kind and the function £ is the elliptic
integral of the second kind.

Solving the equations for various p values we have several buckling conditions summarized in
Table 1. and showing the consequences in Fig. 2. Where the load P is the design load per Elastic
Buckling following Timoshenko and Gere [2]. The value in Table 1 confirm with the Table 2-4
of Timoshenko and Gere [2].



Table 1 - Buckling Criterion

p sin”p kL K Psitical/ [W°EV(2L)*] | yo! L Xol L dx/dy | dy/dx ay
0.0000 | 0.0000 | 1.5708 | 2.0000 1.0000 0.0000 | 0.0000 - 0.0000 | 0.0000
0.7071 | 45.0000 | 1.8541 | 1.6944 1.3932 0.7628 | 0.5431 | 0.0000 - +90
0.9089 | 65.3538 | 2.3210 | 1.3535 2.1833 0.7832 | 1.0000 | 0.8604 | 0.9269 | 42.8285
0.9998 | 89.0000 | 5.4349 | 0.5780 11.9714 0.3679 | 1.6295 | 28.6363 | 0.0349 | 1.9994

| »=07628L ‘
P (K=2), x0=y0=ao=0

V

1.3932 P (K = 1.69)

| 0

Slope =dx/dy =0 <—

2.1833 P
(K=135) ]

X0 =L
»0=0.7832 L
ap =42.83 deg

l 11.9714 P (K =0.578)
xo=1.6295L

10 =03679 L
ap = 2 deg

Fig 2 — Buckling Due to Increase in P or reduction of effective length factor K



Discussion over the & of Eq. 7 of article at www.facsystems.com/Elastica.pdf

Fig. 3 shows the situation

V—

X0
/\‘»yvo — X0
/\ x,,O
L

v

Fig. 3 Change of sign in y(x)

[em+c ~|fem+c]

L—x, :L—(x(')+x(;):L—j

I=(emaf Jl [en+arf

or

& [em+a

\/I—Qg(y)+Cl

Thus Eq. 12 is correct.
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Analysis:

Before solving the general solution for ultimate and linear buckling, we will show two
examples that set up the equations. In these examples we show the critical load must be
separated from other loads. For example Fig. 4 shows a crane tower where the dead load
and moment should be separated from the critical load.

P crt

W3

Fig. 4 Crane Loading with P critical

A second example in Fig. 5 shows a mechanical bracket with the critical point loads at
point E and F. Also, attached is two strings from AB and AC and point D has a hinge.
From Fig. 5 we have,

P= P and P2 P (14)

a+b a+b

Thus, the buckling on the column is effected by P, and P, where they are both dependent
on P, . Therefore, we need to set up the buckling equations using different loads
attached on the column with a scalar factor multiplied by P.,, We will use ; as the
multiplication factor. In Fig. 5 ¢, becomes.



S
t a+b o
f{ 1}: Where P =1P, .oooieiieiiiiee e, (15)
b 2a
Lla+b]

|
L&A
E D F
BI‘ ° 3 ‘dc
v lpz l l
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| 1 | |
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(27777

Fig. 5 Mechanical Bracket with two P,

With these examples we set up the loads at every joint i as follows:

P, and O, for dead loads at joint i

P =tP for live load at joint i

i i~ crt

Solving Case II of article www.facsystems.com/Elastica.pdf the moments becomes

M, =S (Pt 4 Py )0y = 2)+ O oo (17)
j=0



i

1
e B,,r, + P, )y, —y)+ 0,
i | J=

or

1
g,(») = _E_Ii[Ri(yi _y)+AiRi]

where (18)

R=Y(Ps,+P,)
Jj=0

and

4, :; : (P, +P, )(y_/_yi)"'QD_/}

1 ]:

Integrating g,(y) yields:

1
Je) =2 SR G =2 + AR 0, =)+ (€1, - D7 o1

or
0.5R. )

(y) = ——i AY =B +1 19
Jam=" 0~y + J+ (19)
where
B = \/ Af—z(CI"_l)EI" 4 \/1_2((:1,.2—1)E11.

R A’R,
And the equations become:
L=[" b SO (20)
it
0.5R,
1- l A) -B*|+1
\/ { i -y~ ]ﬁ
O'SIR" [( —y—4A,) BZ]+1
X =-— A U (21)

\/1_{055,-[( Cy—4) BZ]HT
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E
or )
e
X, —-x =" : =dy+1,
by
0.5R, .
1- “Ny.—y—A4.) —B; [+1
\/ [EI,. -y 4) ]+}
Now:
0.5R,
S El 0 -y-a) 5]
(xn_‘xn—l)+(‘xn—l_xn—2)+ +(x1 xo)ZZJ‘yi l dy+L
=0 0.5R, -
- : -y—A ) —-B |+1
\/ {EI,. (v, —y—4,) ]+}
or forx, =L wehave
1 0.5R, [(yi_y_Ai)z_Biz]
=L, EI "

Yixl
Xy = —
0 ; Vi - OSRZ [( _ —A)Z—BZ]+1 2
Bl YT i

The change in sign in Eq. 7 of article www.facsystems.com/Elastica.pdf is included as
discussed before in Eq. 13. The coefficient C1,. is found at y =y, =0, x, =0, thus

0.5R
ﬁ (yn—l -0- Anfl)z - Bil]: 0

or

B: =(y, = A, ) (24)

or from Eq.19
R

ik’ B [Anz_l - (y,,_l -4, )2 ]+ 1

Cl =
" 2EI

Now let
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y,—y+ A =B, cos¢

dy=B;singd¢
A
2,=cos”'|
» M
A Vi= Vit A4
¢1i+1 = CO0S 1|:T11:| ............................................................
k? _ R
" EL
and

p, =0.5kB,

In Eq. 20, Eq. 21 and Eq. 23 yields:

&1 ope d¢
L — Z;j¢1”1 ﬁ ........................................................
i=0 1-p;sin” ¢

And Eq. 26 becomes an elliptical integral.

Similarly:
. 2pesin’® @, —1
x =
’ 2p, singy+/1— pg sin’ @,
where
D, =0.5k,B,
Ry =Pty +Pyy
2(1-C1,)EI
A, :—QDO and B, :\/A(er—( ) ELy
0 0
A
-1 0
=cos | —
o[ 2]
Thus:
x,=0 or a _ 00 = at
dx @ x=x, and y=y,
P, Sing, = \/—
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This becomes the ultimate buckling for a zero slope or % = oo at the tip of the column.

X
The procedure is to pick P = P,,, and solve for yy,y;, ........ , Vu-1 from Eq. 20 through L;
( similar to Eq. 27 or appendix A in article www.facsystems.com/Elastica.pdf’) and check
if Eq. 28 is satisfied else update P,,, , and P,,, for the first condition of ultimate buckling
can be obtained. Now for the second condition of the ultimate buckling namely P,,, for

Xo = L can be found from writing Eq. 23 using Eq. 25 yields;

x,=L= kij"“f psin’ ¢ dg

\J1-p’lsin’ ¢

And Eq. 29 becomes elliptical integrals. The procedure is to pick P = P,,, and solve for y,
N I , Vu-1 from Eq. 20 through L; ( similar to Eq. 27 or appendix A in article
www.facsystems.com/Elastica.pdf’ ) and check if Eq. 29 is satisfied else update P, , and
P, for the second condition of ultimate buckling can be obtained.

In these analysis the coefficient C1; can be found from B; by forcing the condition on
equal slope at the joints. Thus from Eq. 21:

0.5R., 0.5R [ » .»
— =y, A4, 1= A - B |+1
E[i71 (yz 1 yl + ] l [ ]
or
EI R
1'2—1 = E[llla [A2 Bi2]+ (yi—l -y + 4, )2
k2 [A2 Bz]+ yl yi+A1’—1)2
i-1
where (30)

and from Eq. 24

an—l = (yn—l -4, )2
R

:¢[A: (yn 1 n—1)2]+1

Cl
" 2EI

For the condition where it is a continuous moment of inertia for a non-prismatic column
then set /;; = I; in Eq. 30 for the moment of inertia at the joints.
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Linear Buckling per Timoshenko:

This is the case where P, is to be found for y; = 0. We will have to start with an example
from Timoshenko p114 to set up the solution. From Timoshenko Eq 114 and Fig 6, we
have

I
0 Ly
1 L
T,
v
X

Fig 6 Timoshenko Example
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B2 =y0(1—COSkIL1)

or

O o 0SK L, e, G1)
Yo

where

k; _ P and k! _ P
El, El,

Using Eq. 26 we have:

_ j o 49 j I (32)

o w/ — pisin® ¢ k ¢12w/1 p;sin’

We have from Eq. 18 and Eq. 19

Py=0,=0, =1, =0, R=P, R=P, 4,=0, A=y,
2(1-C1,)El,

2(1-C1,)EI
Bgz(#o)o’ Blzz(yo_)ﬁ)z"'#a
And from Eq. 24 and Eq. 30
B =y +4 =y,
1 1
B; =—I—°(A12—Bf)+(yo—yl +4,) =—]—°[(y R R A (Y
1 1

As y, =y, approch zero= B, =B, > 0 or k,B,=kB, >0 or p,=p, —0

Also from Eq. :
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—cos!| Ao | Z cos(0) = F
@2, = cos {B} cos (0) 5

0

¢11:COS_1|:yO_y1+AO:|:COS_l Yo =N

\/—%[(y R T (e

1

Vo= N
=cos” Y (33)

2
A (yo ylj I +[y—yj
1 Yo Yo
$2, :cos{i}:c (yo ylj
B, Yo

g1, =cos{%ﬁ4} =cos‘l{y1 ~0-(, _yl)}zcos_l(l)ZO

1 Yo

We see in the first integral on the right hand side of Eq. 32 shows:

Yo =N
cos™ Yo Sy 34
> ¢ > (34)

2
] ()’o yl] _1 +(yo_y1j
11 Yo Yo

Or ¢ — 0in the first integral as y, = y, — Othus p, sin’ ¢ — 0 in the denominator.

dasy, =y, >0

Similarly we see in the second integral on the right hand side of Eq. 32 shows:
0<¢<cos (yo ylj -0
y() as y,=y; =0

Or ¢ — 0in the second integral as y, = y, — Othus p;sin’ ¢ — 0 in the denominator.

Thus Eq. 32 becomes:

16



1 42 1 o2
L_k_o-[¢11 d¢+;lj‘¢12 d¢
— ¢2o B ¢11 + ¢21 — ¢12

kO kl

Substituting Eq. 31 in Eq. 33 and then substituting in Eq. 35 yields;

L= ki % —cos™ - cosh Ly + ki(kll’l ~-0)
0 \/— 1—0 [cos2 kL, — 1]+ cos’ kL, !
1
. \/?0 sink, L,
S T [ —
ky| 2 cosk,L,
or

koL, = Z tan™ L tank,L,
2 I,

which can be written as :

tank L tank,L, = \/Z — &
Lo ke (36)

Equation 36 matches Eq. (b) pp 114 of Timoshenko.

General Solution for Linear Buckling:

To obtain Timoshenko linear buckling we need to set Op; = 0 in Eq. 18 as explained in
chapter 1 of Timoshenko book the moments and loads in the x direction can be isolated
from the vertical load. Thus:

1 i
A= | D (Bt + P, Y, = )| e (37)

i [ Jj=0

We first note as y; approach zero:

17



B =4 , inEq.24
B ,=4,,inEq.30

n n

B = A fromEQ.30 oo (38)

B=4
B,=4,=0, %:0

0
Thus from Eq. 25

| ViV t4

1

1

} =cos ()< P< @2, = cos"l{i} =cos (1)

as y; >0 B

Thus ¢ >0 as y, > 0Also B,=4,=0asy, >0 in Eq.18

Thus p, =0.5k,B, — 0in Eq.25 . Therefore p;sin’ ¢ — 0 in the denominator of Eq. 26.

And Eq. 26 becomes:

Or from Eq. 25 yields;

n—1 _
L=SMeos| A |cgos | 2z den TAN (40)
i=0 ki Bi Bi

Now we need to relate 4;, B; and y; to k:.L; . To start we look at every segment L; and note
the curvature can be approximated to the differential equation:

18



2 i
ElicciixJ;: (Ptj+PDijj_y):RiA7'_Riy

Jj=0

or

2
g 4

] 2
" dx

FRY=RA (41)

or

d’y ., RA
— < 4+ k=Lt
dx* Y EI

1

First we translate the axis with

y= y'+yi+1 and x= _x'+xi+l

SO (42)
d’y _ d|dydydx __i[ﬂ}__ﬁdzy' _dy
dx*  dx| dy'dx' dx dx| dx' dx dx”  dx"

Substituting in Eq. 41 yields;

2

dy' ) R A
+k (YY) =
dx,z i (y y1+1) E]l
0 (43)
dzy' +k.2y': Ri(Ai _yHl)
dx” EI

1

Next we rotate the axis by «,,, where «,,,1s the angle at the bottom of the segment L; at
joint i+1. This makes the segment fixed at joint i+1. Thus:

y'=y'cosa,,, —x'sing,,, and y'=y"cosq,

i+l

+x"sing,,,
"__ { PP ' ' "oy "
x"=y'sing,,, +x'cosa,,, and x'=—)"sine,,, +x"cosa,,,

Instead of substituting Eq. 44 in Eq. 43 we look at a free body diagram, Fig 7, and resolve

force R; with the rotational angle «;,, at joint i into the fixed base segment L; along with
the carried moment R. 4, .

19



Coordinate
(x9’i ) y9’i )

v
X
Fig 7 — Free Body Diagram
The differential equation becomes:
dzy" " " " " 1
EI o =RA +(",—y")R cosa,, +(x",—x")R, sina,,; .......ocooiiiiiiii (45)
X

When o,,, =0 = )" =y'=y -y, and »"=y'and Eq. 45 becomes Eq. 43.
Rewite Eq. 45 to

2. n
y " —_ " " : " 5
EI, e + V"R, cosa,,, =R, A, + )" R cosa,, +x", R, sina,,, —x"R,;sina,,,

or

dZyu
ng?2 _ 12 " "o ng2 o
e + "k cosa,,, =k, (Ai + )" cosa,,, +x"; sin am)—x k7 sine,,,

from Eq. 44 we have (46)

dzyu yvk2 _kz(A ') "k2 X
dan TYK oS, =K ;T YL )Xk sia,

from Eq. 42 we have
2.n

—C;; i; +y"k?cosa,, =k} (A4 +y, -y, )-x"ksina,,
X

The solution to Eq. 46 is

20



V'=A+ Bx"+Ccosk,x"\[cosa,,, + DsSInkx"\[COST,; .covveviniiiiiiiiiiii. (47)

Substituting Eq. 47 in Eq. 46 yields;

Ak} cosa,,, =k} (A4 +y, - v.,)

or

4= A+y, = Vi
cosa,,,

and

2 _ 2 .
Bk cosa,,, =—k; sina,,,
or

B=-tana,,,

Thus Eq. 47 becomes:

A+y —y, .
y'= LTV Vi o a,, x"+Ccoskx"\cosa,, + Dsinkx"\[cosa,, ............... (48)

cosa,,

Enforce the end condition:

@x"=0 and »"=0 Eq.48 must be satisfied or

Co_ A Y, =Yl (49)
cosa,,
And Eq. 49 becomes:

A+y -y, .
y'= LTV 7 Vi (1 —coskx"\/cosa,,, )+ Dsinkx"cosa,,, —tane, x" ............. (50)

cosa,,,

Differentiating Eq. 50 yields;
" A4y -y, .
W ATV Vm k.\Jcosa,,, sinkx"\/cosa,,, + Dk, cosa,, coskx" /cosa,,, —tane,,,

"
dx cosa,,,

Enforce another end condition:

21



dy"

@x"=0and »"'=0 —=0
dx" 5
. faN@,, T (52)
k.\cosa,,,
And Eq. 51 becomes:
" A
% AX Vi T i k.cosa,,, sinkx" /cosa,, +tane,,, (cos kx"\/cosa,, — 1)
X cosq,,
............................. (53)
And the solution to the differential Eq. 46 becomes:
A. =y, t . )
y'= Ax Vi = Vi (1 —cosk,x",/cosa,,, )+ % in kx"\/cosa,,, —tana,, x"
cosa,,, k.Ajcosa,,
................................................................. (54)
Substituting "= )", and x"=x", =L, in Eq.54 and rearranging yield;
cosa,, Y +sina,, x"= (Al. +¥, =V )(1 —cosk,L.\/cosa,,, )+ % in k.L..cosa,,,
k.\Jcosa,,,
or from Eq. 42and Eq.44 we have:
Vi=Vin =4+ Y=Y — (Ai - yHl)COS kiLi cosa,, +ﬂ5ink L\Jcosa,,
k.\/cosa,,,
................................................................. (55)
Cancelling terms in Eq. 55 yields:
A.+y.—y.+1 sina,,
T = tank,L,,\/COSQ,,; weviiiniinin.n (56)
4 coskL cosa,, Ak cosa,,

Finding «,,, is as follows:
Rearranging Eq. 53 yields;

n

dy cosa,.. ' eos o
3 "
——cosqa,,, +sina,, (Ai +V, = Vi )ki cosa,,, sinkx",/cosa,,, +sine,,, cosk,x"\/cose,,,

dxﬂ

22



Enforing the condition @ x"= L, — % = tan(e, — a,,, )in Eq. 57 yields;
x

tan(e, —a,, )cosa,,, +sina,,, = (4, +y, — ., J;4Jcos @, sink,L,/cos a,,, +sina,,, cosk,L,./cosa,,,

i+l

............................................. (58)
Nowasy, -0 cosa,, =1, sina,, >, and tan(a, -a,,)—>a, -a,,
Substituting in Eq. 56 and 58 yields;
e vy R (59)

4, cosk, L, Ak,
o =0, T, = (Ai Vi = Yin )ki sink,L; +a,,, cosk,L,
OF (60)
a; -, cosk,L, = (Ai TV = Vi )ki sink, L,
Eq. 60 is a finite difference equation and has a solution equal to:
: 1-(cosk,L, )"
a,=(4,+y, -y, ksinkL oSk L) | (61)
1 —cosk,L,
Sothatati=n, a, =0. Substituting Eq. 61 in Eq. 59 yiels;
n—i—1
Ai+yi_yi+l — 1 +(Ai+yi_yi+l)5inkiLi 1_(COSkiLi) tankiLl.
4, cosk,L, 4, 1 —cosk,L,
or (62)
_Ai+yi_yi+1_ 1 1
o A ~ cosk.L, - Ly
l "' | 1=sink,L, tank,L, 1-(coskL,)
l1-cosk,L,

Substituting Eq. 62 in Eq. 40 yields;

n—

L1 4l A 0 A
—<cos | — |——cos e 63
! ! ! where 4;#0

Now for the first term 4o = 0 and

L=

23



Al Yo=Y
¢11 = COS 1(#}

0

and from Eq.30

B, :\/_%ﬁ(/ll2 _Blz)"'(yo _y1)2

El, R,

or

1
\/1— El, R A} - B}
El, R, (J’o —y1)2
Since from Eq.37 4, = (y, — », ) then

#l, =cos™

1

\_EL R (B
EI, R, Al

#l, = cos™

Thus:

1
ko

L=

N

n—1
—cos™ ! +Z:i cos"l(ﬁJ—cos"l(% iJ ceen (65)
JI_EIO&(I_Bf] Tk B B

El, R\ A’

From Eq. 30 we have:

B, _\/k_zz Az’2 _Bi2 n (yi—l — )i +Ai—1)2

Ai—l ki2—1 Ai2—1 Aiz—l
_\/k_t2 A[Z _B[Z Aiz +V/2
— P R R R
kL, A7 AL

Now from Eq. 37 we have:
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1 i
4, :E{ (])crtti+PDi)(yj_yi)j|
i [ j=0
1 i—1 1 i—1
= E (Pmti + P, )(yj - yi—l) + E z (Pmti + P, )(yH - yi)
i | J=0 i =0
:%Ail + 121 (yi—l _yi)
OF e (67)
4 = R, 4., (Ai—l T Vi~ yi)
R A

i i—1

from Eq. 62 we have:

R,
4, = R%l AW

1

Substituting Eq. 67 in 66 yields:
Bo_, |KRL[_B),,
Ai—l WFI kiz—l Izi2 Azz

R, EI (. B
=W L= [ 68
Wll\/ Ri E][ ( Az] ( )

1

For the end condition from Eq. 24 for y, | — 0 then B,_, =4, ,or A =1, and all

n—1

A can be found consecutively from Eq. 68 and substituted in Eq. 65 and the solution is

found by solving for P,,,.
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Other End Conditions:

End Condition #1: This condition has a pin at bottom end and rotational fixed at the top
end but free to translate at the top as in Fig. 8.

Fig. 8 Pin — Rotational Fixed Column

Thus the moment Qpy at the tip of the column makes @ =0 0— & =00
dx @y=x=0 dy @ y=x=0
Nowat y=y, and x=L g,(v,) =0 or Eq. 18 becomes:
n—1
[(IDCrttj +PDj)yj +QDj]: 0
j=0
or
n—|
(Pt + Pog o + Opo + S (Pt + Py )y, + 0 |20 oo (69)
j=1
or
n—l
Op = (Pmto +PD0)y0 - [(Pmtj +PD] )yj +QD]]
J=l
Thus:
n—1
4y =Loo _ —{ (Pouty + Py o = S NPt + Py )y, + 0, ]} .......................... (70)
0 0 J=1
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Thus @ =

— fromEq.21 B, =4,
dy

@y=x=0

And Eq. 24 does not apply. So rewriting Eq. 30 to

kZ
Bl =4 +-L
" L

1

—y,+A4,) Bil] ................................................... (71)

Therefore by substituting 4;, A;1, Bi.1in Eq. 71 then B; is found and
#l.,, , ¢2, and p, are found from Eq. 25 and the ultimate buckling for P, is found for

X, =00 orﬂzo

dx

by replacing ¢, and p, by ¢, and p, . Also the ultimate

@ y=y, and x=L
buckling for P,,; can be found for x = L.

For Timoshenko linear buckling we rewrite Eq. 68 to

A 1
B, 2
REL (L Bl L
Ri—l EIi—l V/l Al

Thus by substituting % =1 and y, from Eq. 62 with Eq. 70 all % can be found from
0 i

Eq. 72 and with Eq. 62 and 65 P, is found.

End Condition #2 Same as condition #1 except fixed at x = L as in Fig 9.

From Eq. 24 we have:

Bl = (1, = Ay ) e (73)

For g,(y,) =0 implies

S (2o, + 2, )y, + 0, ]= 00

or

(Pmt + P, )y0 +0p + i[(Pmt/ + P, ) y, + QD_/]: O oo (74)
or

Ono (Pmt + P, )y nzl[(Pcnt, + Py ) v+ QDj]+ O,
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N
QDn
Fig. 9 Fixed — Rotational Fixed Column

Thus the procedure is to pick Op, and find Qp¢ from Eq. 74 and use procedure in
condition #1 above to solve for y; for given L; and find all B; then 1., , ¢2, and p,

are found from Eq. 25 and the ultimate buckling for P, is found by replacing
¢, and p, by ¢, and p, . Then check if Eq. 73 is satisfied if not update Op, . Therefore,

the ultimate buckling for P.,, can be found for x = L as in Fig. 10.

y+—— W

X0=L

%_/'\l

Fig. 10 — Ultimate Buckling
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For Timoshenko linear buckling selected Op, and find Qpo from Eq. 74 and use

procedure in condition #1 above to find all B; then A can be found from Eq. 72 and
with Eq. 62 and 65 P, is found, then check if B, , = 4, , for y, , — 0 is satisfied if not
update Op,, until P,,, is found.

End Condition #3 Pined both ends as in Fig 11.

PART A

PART B

Fig 11 — Pined both ends.

Subdividing the column into two parts Part A and Part B at point E at line a —a where

the slope % =0 in which it is to be found. Separate the loads of Part A and Part B and
X

solve for P, for Part A using a straight cantilever column fixed at pint E and find yga.
Then substitute P,,, in Part B using end condition #1 (pin at bottom end and rotational
fixed at the top end but free to translate at the top.) and find ygg . Check and see if yop =
vos - If yoa not equal to yop then move point E at line a — a up if ypa > yop or down if ypp <
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vop until point E is found and P, is found. The ultimate buckling first criterion is when

% =00 —> ? = 0 at point F or G and the second ultimate buckling when xo + xop = 0.
X 'y
For Timoshenko linear buckling find P,,, for Part A at point E and P,,, for Part B

separately and see if they are equal if not move point E until they are and P,,, 1s found.

End Condition #4 Fixed both ends.
This condition is similar to end condition #3 where Part A and B are as condition #2. The
ultimate buckling criterion is only one for xga + xo = 0.

Applications:

One of the most useful applications is High Rise Buildings. We can take a one line
column of several stories and introduce at the joints loads a K,,y; force and a

Ky, moment where K, and K, is the stiffness of the adjacent members at the joist or

from an output of a frame analysis program. By using the ultimate buckling or derive the
linear buckling solution with springs the buckling load can be found. A prescribed drift
for ultimate buckling will be needed. Another application is a truss tower with variable
moment of inertia, such as crane towers, ski lift towers, gondolas towers, power utility
towers, bridge towers, foundation towers and windmill towers etc. In these cases the
ultimate buckling or linear buckling solution can be used depending on the applications.

Other applications of Buckling

1- Aerospace

2- Naval Architecture

3- Pipeline buckling in deep water applications
4- Offshore piles

5- Radio or Transmission Tower
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